DA	R	MT210	1
107	2.5	IVERALU	•

(PAGES 2)

-				
Reg.	No	******	*****	******

14

Name:

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023

(Regular/Improvement/Supplementary)

MATHEMATICS

GMAT4B04T: MULTIVARIABLE AND VECTOR CALCULUS II

Time: 2 1/2 Hours

Maximum Marks: 80

SECTION A: Answer the following questions. Each carries two marks. (Ceiling 25 Marks)

- 1. Find the level curve of the function $f(x,y) = 4x^2 + y^2$ at the point $\left(\frac{\sqrt{3}}{2},1\right)$.
- 2. State the Extreme Value Theorem for Functions of Two Variables.
- 3. Let $w = x^2y xy^3$ where $x = \cos t$ and $y = e^t$. Find $\frac{dw}{dt}$
- 4. Evaluate $\int_0^{\frac{1}{2}} \int_0^{\sqrt{1-x}} 2xy \, dy dx$
- 5. Find Jacobian of the transformation T defined by $x = e^u \cos 2v$ and $y = e^u \sin 2v$.
- 6. Write the formula for finding the area of the surface z = f(x, y) defined over a region R in the xy plane.
- 7. Write an equivalent integral in polar coordinates for the integral $\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} e^{x^2+y^2} dy dx$.
- 8. Write the relation between the rectangular coordinates (x, y, z) and the spherical coordinates $(\rho, \theta, \emptyset)$.
- 9. Define the line integral of a vector field \vec{F} along a smooth curve C.
- 10. Define curl of a vector field \vec{F} .
- 11. Determine whether the vector field $\vec{F}(x,y) = 2xy^2\hat{i} + x^2y\hat{j}$ is conservative or not.
- 12. Define a potential function for a vector field \vec{F} .
- 13. Write a parametric equation for the cone $x = \sqrt{y^2 + z^2}$.
- 14. State Stoke's Theorem.
- 15. Define a smooth surface.

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 35 Marks)

- 16. Find equations of the tangent plane and normal line to the surface with equation xy + yz + xz = 11 at the point P(1,2,3).
- 17. Evaluate $\iint_R (x^2 + y) dA$ where R is the region bounded by the graphs of $y = x^2 + 2$, x = 0, x = 1 and y = 0.
- 18. Evaluate $\iiint_T z dV$ where T is the solid in the first octant bounded by the graph of $z = 1 x^2$ and y = x.

- 19. Find the directional derivative of $f(x, y) = e^x \cos 2y$ at the point $\left(0, \frac{\pi}{4}\right)$ in the direction of $\vec{v} = 2\hat{\imath} + 3\hat{\jmath}$.
- 20. Evaluate $\int_C 2x \, ds$ where C consists of the arc C_1 of the parabola $y = x^2$ from (0,0) to (1,1) followed by the line segment C_2 from (1,1) to (0,0).
- 21. Find curl \vec{F} if $\vec{F}(x, y, z) = xy\hat{\imath} + xz\hat{\jmath} + xyz^2\hat{k}$ and hence find curl $\vec{F}(-1,2,1)$.
- 22. Find the surface area of the part of the paraboloid $\vec{r}(u, v) = u \cos v \hat{\imath} + u \sin v \hat{\jmath} + u^2 \hat{k}$ where $0 \le u \le 3$ and $0 \le v \le 2\pi$.
- . 23. Evaluate $\iint_S x + y \, dS$ where S is the part of the plane 3x + 2y + z = 6 in the first octant.

SECTION C: Answer any two questions. Each carries ten marks.

- 24. If $\vec{F}(x, y, z) = 2xy^2z^3\hat{\imath} + 2x^2yz^3\hat{\jmath} + 3x^2y^2z^2\hat{k}$,
 - (a) Show that \vec{F} is conservative and find a function f such that $\vec{F} = \nabla f$.
 - (b) If \vec{F} is a force field, find the work done by \vec{F} in moving a particle along any path from (0,0,0) to (1,1,1).
- 25. State the Second Derivative Test for a function of two variables. Find and classify the relative extrema and saddle points of the function of $f(x,y) = 2x^2 + y^2 2xy 8x 2y + 2$.
- 26. Evaluate $\iint_R x + y \, dA$ where R is the parallelogram bounded by the lines with equations y = -2x, $y = \frac{1}{2}x \frac{15}{2}$, y = -2x + 10, $y = \frac{1}{2}x$. T is defined by x = u + 2v and y = v 2u
- 27. (a) Using Green's theorem, evaluate $\oint_C (x^2y + x^3) dx + 2xy dy$ where C is the region bounded by $y = x^2$ and y = x.
 - (b) Let T be the region bounded by the parabolic cylinder $z = 1 y^2$ and the planes z = 0, x = 0 and x + z = 2 and let S be the surface of T.

If
$$\vec{F}(x,y,z) = xy^2\hat{\imath} + \left(\frac{1}{3}y^3 - \cos xz\right)\hat{\jmath} + xe^y\hat{k}$$
, find $\iint_S \vec{F} \cdot \bar{n} \, dS$.

 $(2 \times 10 = 20 \text{ Marks})$