Reg.No.....

Name:

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023

(Regular/Improvement/Supplementary)

ECONOMICS & MATHEMATICS (DOUBLE MAIN)

GDMT4B04T: ABSTRACT ALGEBRA

Time: 2 1/2 Hours

Maximum Marks: 80

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 25 Marks)

- 1. Is every abelian group cyclic.
- 2. Find $\Phi(10)$, where Φ is the Euler's function.
- 3. In Z_7 , find $([4]_7)^{-1}$
- 4. If $\sigma = (1423) \in S_4$, find σ^{-1} .
- 5. Define an abelian group.
- 6. Is Z_n cyclic?
- 7. Define kernel of a group homomorphism.
- 8. Find the order of the permutation (1 2 4) in S_5 .
- 9. List the elements of S_3 .
- 10. Find all cyclic subgroups of Z_4 .
- 11. In Z_5 , find the order of 2.
- 12. Let F be a field . For all $a \in F$, prove that -(-a) = a.
- 13. Let G be Group, define an automorphism of G.
- 14. Is Z_{11} simple?
- 15. Is $\langle \mathbb{R}, + \rangle \cong \langle \mathbb{R}^+, . \rangle$. Justify.

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 35 Marks)

- 16. State and prove Fundamental homomorphism theorem.
- 17. Let $\Phi: G_1 \to G_2$ be a group homorphism with kernel $\Phi = K$ Prove that the homomorphism is 1-1 if and only if $K = \{e\}$.
- 18. Give examples for even and odd permutations in S_5 .
- 19. Find the order of the permutation (1 3 5 4)(3 1) in S_{6} .
- 20. Is Z_7 an integral domain?
- 21. State and prove second isomorphism theorem.
- 22. Make the addition and multiplication table for Z_6 .
- 23. Draw the subgroup diagram of Z_9 .

SECTION C: Answer any two questions. Each carries ten marks.

- 24. State and prove Lagrange theorem.
- 25. In Z_{11} , a) Find the order of [2], [5], [6], [7], [9]
 - b) Find the inverse of [3],[4],[8],[10].
- 26. State and prove Cayley 's theorem.
- 27. a) Consider S_7 , express the following permutations as product of disjoint cycles and Product of transpositions. Also find their order.
 - i) (1 4 5 7) (4 2 5)(2 3)
 - ii) (3 5 6)(2 5 6)(4 3 1)
 - b) Explain the t nonisomorphic groups of order 4.

100

 $(2 \times 10 = 20 \text{ Marks})$