33

Reg.No.....

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023

(Regular/Improvement/Supplementary)

ECONOMICS & MATHEMATICS (DOUBLE MAIN)

GDMT4A02T: THEORY OF EQUATIONS AND COMPLEX NUMBERS

Time: 2 1/2 Hours

Maximum Marks: 80

SECTION A: Answer the following questions. Each carries two marks. (Ceiling 25 Marks)

- 1. By the method of detached coefficients, divide $x^5 3x^2 + 6x 1$ by $x^2 + x + 1$.
- 2. Find the upper limit of the moduli of roots for the equation $2x^4 7x^3 + 6x^2 5 = 0$.
- 3. Divide $x^4 x^2 + 5x 6$ by x + 2 using synthetic division.
- 4. Expand $x^4 6x^2 + 1$ in powers of x + 2.
- 5. Find a lower limit of negative roots of the equation $2x^6 + 20x^5 + 30x^3 + 50x + 1 = 0$.
- 6. Give an example of a biquadratic equation.
- 7. State fundamental theorem of algebra.
- 8. Solve trigonometrically $y^3 3y + 1 = 0$.
- 9. Define symmetric function. Give an example.
- 10. The equation $x^3 3x 3 = 0$ has at least one real root. State true/false. Justify.
- 11. State Descartes rule of signs.
- 12. Express $\frac{2-4i}{3+5i}$ in the a+ib form.
- 13. Find the principal argument of 1 + i.
- 14. Give the parametric representation of a circle with centre z_0 and radius r.
- 15. Find the complex conjugate of z = 1 4i.

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 35 Marks)

- 16. State and prove remainder theorem.
- 17. Find the highest common divisor of $x^6 + 2x^5 + x^3 + 3x^2 + 3x + 2$ and $x^4 + 4x^3 + 4x^2 x 2$.
- 18. Solve by Cardan's method $x^3 15x 126 = 0$.
- * 19. Find the rational roots of the equation $6x^4 7x^3 + 8x^2 7x + 2 = 0$.
- 20. Separate the roots of the equation $2x^5 5x^4 + 10x^2 10x + 1 = 0$.
- 21. Verify that $(x_1 + x_2 x_3 x_4)(x_1 + x_3 x_2 x_4)(x_1 + x_4 x_2 x_3)$ is symmetric and break it into sigma functions.
- 22. Explain the three special types of linear functions.
- 23. Find the modulus and argument of: (i) $z_1 = -i$ (ii) $z_2 = 1 + \sqrt{3}i$

SECTION C: Answer any two questions. Each carries ten marks.

- 24. (i) Find the sum of squares of roots of the equation $2x^4 8x^3 + 6x^2 3 = 0$.
 - (ii) Solve the equation $x^5 x^4 2x^3 + 2x^2 + x 1 = 0$ given that the equation has multiple roots
- 25. Solve $x^4 8x^2 4x + 3 = 0$ using Ferrari's method.
- 26. Show that for all real values of λ , the roots of the equation.

$$f(x) = (x-1)(x-3)(x-5)(x-7) + \lambda(x-2)(x-4)(x-6) = 0$$
 are simple and separate them.

- 27. (i) If $z = \frac{-1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$, show that $z^2 + i = 0$.
 - (ii) Evaluate $\left(\frac{1}{2} + \frac{1}{2}i\right)^{10}$.

 $(2 \times 10 = 20 \text{ Marks})$