(PAGES: 2)

Reg. No.....

Name:

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2024 (Regular/Improvement/Supplementary) STATISTICS: Complementary Course for Mathematics & CS GSTA3C03T: PROBABLITY DISTRUBUTION AND SAMPLING THEORY

Time: 2 Hours

Maximum Marks: 60

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 20 marks)

- 1. Define chi-square statistic.
- 2. If X follows Normal with mean 40 and variance 4. Find

(i) P(X < 50). (ii) P(X > 40).

- 3. Establish the relation connecting Bernoulli and Binomial random variables.
- 4. Define convergence in probability and convergence in distribution.
- 5. What is sampling?
- 6. Define stratified random sampling.
- 7. If X_1 , X_2 and X_3 are independent observations from N (0, 1), obtain the sampling distribution

of
$$\frac{\sqrt{2} X_3}{\sqrt{X_1^2 + X_2^2}}$$
.

- 8. Obtain the standard error of mean of a random sample of size n from a normal population with parameters μ and σ^2 .
- 9. Define degrees of freedom.
- 10. State Weak law of large numbers.
- 11. Define population.
- 12. Obtain the relation between t distribution and Cauchy distribution.

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 30 marks)

- 13. Prove that square of a Student's t random variable is F random variable.
- 14. $X \rightarrow N(\mu, \sigma)$. Prove that the $(2k)^{\text{th}}$ central moment $\mu_{2k} = (2k 1)\sigma^{2r}\mu_{2(k-1)}$ for $k = 1, 2, 3 \dots$
- 15. Explain systematic sampling.

16. (X_k) , k = 1, 2, 3, ... is a sequence of independent random variables each taking the value -1, 0, 1. Given that $P(X_k=1)=P(X_k=-1)=\frac{1}{k}$ and $P(X_k=0)=1-\frac{2}{k}$. Examine

whether the law of large numbers holds for this sequence.

17. Examine whether WLLN holds for the sequence Xn of independent random variables.

$$P(X_n = \frac{1}{\sqrt{n}}) = \frac{2}{3}$$
, $P(X_n = \frac{-1}{\sqrt{n}}) = \frac{1}{3}$.

- 18. If X₁, X₂, X₃, ..., X_n is a random sample from a normal population with mean μ and variance σ^2 , obtain the distribution of $\frac{1}{n} \sum_{i=1}^n X_i$.
- 19. If $X \to P(\lambda)$. Show that $\mu_{r+1} = \lambda \left[r \,\mu_{r-1} + \frac{d\mu_r}{d\lambda} \right]$.

SECTION C: Answer any one question. The question carries ten marks.

20. For a continuous uniform distribution, $f(x) = \frac{1}{2a}$; -a < X < a. Show that

- $\mu_{2r} = \frac{a^{2r}}{2r+1}$. Hence obtain its variance.
- 21. (i) State Chebyshev's inequality.

(ii) A random variable X has the values -1, 1, 3 and 5 with probabilities $\frac{1}{6}$, $\frac{1}{6}$, $\frac{1}{6}$, $\frac{1}{2}$ respectively. Find, using Chebyshev's inequality, determine $P[|X-3| \ge 3]$.

(1 x 10 = 10 Marks)