D3BHM2302

(3 Pages)

Reg.No:.....

THIRD SEMESTER B. Sc. DEGREE EXAMINATION, NOVEMBER 2024 (Regular/Improvement/Supplementary) HONOURS IN MATHEMATICS GMAH3B11T: CALCULUS III

Time: 3 Hours

Maximum Marks: 80

SECTION A: Answer the following questions. Each carries 1 mark.

Choose the correct answer

1. In \mathbb{R}^3 , the equation $y = x^2$ represents A) a parabola B) a cylinder C) a parabolloid D) a hyperboloid

2. What is the distance between the point P(2, 3, -1) and the plane given by the equation 3x - 4y + 12z + 6 = 0? A) 9/5 B) 7/ $\sqrt{21}$ C) $15/\sqrt{29}$ D) $12/\sqrt{14}$

- 3. Which of the following describes the reflective property of an ellipse?
 - A) The sum of distances from any point on the ellipse to the foci is constant.
 - B) The difference of distances from any point on the ellipse to the foci is constant
 - C) Light or sound waves emanating from one focus will pass through the other focus.
 - D) The product of distances from any point on the ellipse to the foci is constant.
- 4. Consider the function $f(x, y) = \sqrt{25 x^2 y^2}$. What is the domain of this function? A) $x^2 + y^2 \le 25$ B) $x^2 + y^2 > 25$ C) $x^2 + y^2 = 25$ D) $x^2 + y^2 \ge 25$
- 5. If the function $f(x, y) = x^2 y^2 x^2 + y^2$ is evaluated at (x, y) close to the origin along different paths, which of the following is true?
 - A) The limit exists and is the same for all paths.
 - B) The limit does not exist because the function takes different values along different paths.
 - C) The limit exists and is zero.
 - D) The function is undefined for all paths leading to the origin.

Fill in the blanks

- 6. The standard symmetric equations of a line is
- 7. The domain of the vector function $\mathbf{r}(t) = \ln t\mathbf{i} + \cosh t\mathbf{j} + \tanh t$ is
- 8. If $\mathbf{r}(t) = t^2 \mathbf{i} + \cos t \mathbf{j} + \mathbf{k}$, then $r'(t) = \dots$

9. If
$$f(x,y) = x \cos xy^2$$
, then $\frac{\partial f}{\partial x} = \dots$

10. The gradient of $f(x, y) = x \sin y + y \cos x$ at the point $(\pi/4, \pi/2)$ is

 $(10 \ge 1 = 10 \text{ Marks})$

(PTO)

SECTION B: Answer any 8 questions. Each carries 2 marks.

- 11. Find parametric equations for the line passing through the point P(-2, 1, 3) and parallel to the vector $\mathbf{v} = < 1, 2, -2 >$
- 12. Determine whether the planes x y + 2z = 5 and -3x + 3y 6z = 11 are parallel or not?
- 13. The point $(5, \pi/4, 3\pi/4)$ is expressed in spherical coordinates. Find its cylindrical coordinates.
- 14. Define vector valued function.
- 15. Find the interval(s) on which the vector function defined by $\mathbf{r}(t) = \frac{\cos t 1}{t}\mathbf{i} + \frac{\sqrt{t}}{1 + 2t}\mathbf{j} te^{-1/t}\mathbf{k} \text{ is continuous.}$
- 16. Find $\mathbf{r}''(t)$ if $\mathbf{r}(t) = \sqrt{t}\mathbf{i} + \frac{1}{t}\mathbf{j} + \ln t\mathbf{k}$.
- 17. Evaluate the integral $\int (\sin 2t\mathbf{i} + \cos 2t\mathbf{j} + e^{-t}\mathbf{k})dt$.

18. Find the domain and range of $g(x, y, z) = \sqrt{25 - x^2 - y^2 - z^2}$.

19. Define level curve.

20. Find
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$ if $x^3 + xy - x^2z + yz^2 = 0$.

 $(8 \ge 2 = 16 \text{ Marks})$

SECTION C: Answer any 6 questions. Each carries 4 marks.

- 21. Show that the lines $L_1: x = 1-t, y = -2-3t, z = 4$ and $L_2: x = 2-2t, y = -4+3t, z = 1+4t$ are skew lines.
- 22. Sketch the curve defined by the vector function $\mathbf{r}(t) = 2t\mathbf{i} + (3t+1)\mathbf{j}, -1 \le t \le 2$.
- 23. Let $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, where f, g and h are differentiable functions of t. Then prove that $\mathbf{r}'(t) = f'(t)\mathbf{i} + g'(t)\mathbf{j} + h'(t)\mathbf{k}$.
- 24. Find the unit normal and unit tangent vectors for the curve defined by $\mathbf{r}(t) = \langle \sin 2t, \cos 2t, 3t \rangle$.
- 25. Sketch a contour map of the hyperbolic paraboloid defined by $f(x, y) = y^2 x^2$.
- 26. Find all the second order partial derivatives of $f(x,y) = xe^{2y} + ye^{2x}$
- 27. Find the directional derivative of $f(x, y, z) = x^2 y \cos 2z$ at the point $(-1, 2, \pi/4)$ in the direction of $\mathbf{v} = \mathbf{i} \mathbf{j} + \mathbf{k}$.

28. If z = f(x, y) where $x = r \cos \theta$ and $y = r \sin \theta$, show that $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$ (6 x 4 = 24 Marks)

SECTION D: Answer any 2 questions. Each carries 15 marks.

- 29. Find parametric equations for the line of intersection of the planes 3x + y 2z = 4and 2x - y - 3z = 6. Also find the angle between the two planes.
- 30. (a) Find the curvature of the curve $y = e^{-x^2}$.
 - (b) Find the point(s) where the curvature is zero.
- 31. If z = f(x, y) where $x = r \cos \theta$ and $y = r \sin \theta$ show that

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{\partial^2 z}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 z}{\partial \theta^2} + \frac{1}{r} \frac{\partial z}{\partial r}$$

 $(2 \ge 15 = 30 \text{ Marks})$