Reg. No.....

Name:

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2024 (Regular/Improvement/Supplementary) HONOURS IN MATHEMATICS GMAH3B10T: REAL ANALYSIS - I

Time: 3 Hours

Part A. Answer *all* the questions. Each carries *one* mark.

Choose the correct answer.

1. Number of elements in $\mathcal{P}(S)$, where $S = \{1,2\}$ is:			
A) 2	B) 4	C) 6	D) 8
2. The set of all $x \in \mathbf{R}$ th	at satisfy the inequa	lities $ x^2 - 1 \le 3$ is	
A) $-2 \le x \le 2$	$B) -1 \le x \le 2$	C) $-2 \le x \le 1$	$D) -1 \le x \le 1$
3. Let S = { $1 - \frac{(-1)^n}{n}$, n	$\in \mathbb{N}$ } . Find sup S.		
A) 1	B) 0	C) 2	D) $\frac{1}{2}$
4. If $I_n = \left[0, \frac{1}{n}\right]$, $n \in \mathbb{N}$, then $\bigcap_{n=1}^{\infty} I_n = $			
A) Ø	B) {0}	C) {1}	D) [0,1]
$5. \lim_{n \to \infty} \frac{3n+1}{n+2} = \underline{\qquad}$	·		
A) 1	B) 2	C) 3	D)0

Fill in the Blanks.

- 6. If a \in R is such that $0 \le a < \varepsilon$ for every $\varepsilon > 0$, then a = _____.
- 7. Every nonempty set of real numbers that has an upper bound also has a _____ in R.
- 8. The set (a,a) =_____, for any real number a.
- 9. The rational expression for 7.31414141... is ______.

10. _____ is an example of a bounded sequence that is not Cauchy.

 $(10 \times 1 = 10 \text{ Marks})$

Part B. Answer any *eight* questions. Each carries *two* marks.

- 11. Define positive real numbers. Show that 1 > 0.
- 12. If $A_i = \{i, i+1, i+2, ...\}$ find (i) $\bigcup_{i=1}^n A_i$ and (ii) $\bigcap_{i=1}^n A_i$.
- 13. State and Prove Bernoulli's inequality.
- 14. Prove that $||a| |b|| \le |a b| \forall a, b \in \mathbb{R}$.
- 15. Show that if A and B are bounded subsets of \mathbb{R} then AUB is a bounded set. Show that $\sup A \cup B = \sup \{\sup A, \sup B\}.$
- 16. Using Archimedean property show that $\inf \{\frac{1}{n} : n \in \mathbb{N}\}=0.$

D3BHM2301

Maximum Marks: 80

- 17. Show that a sequence of real numbers can have utmost one limit.
- 18. Prove that every Cauchy sequence is bounded.
- 19. Show by a suitable example that intersection of infinitely many open sets in \mathbb{R} need not be open.
- 20. Show that the set N of natural numbers is a closed set in R.

$$(8 \times 2 = 16 \text{ Marks})$$

Part C. Answer any six questions. Each carries four marks.

- 21. Show that set Q, of rationals is countable.
- 22. If x and y are real numbers with x < y, then prove that \exists an irrational number z such that x < z < y.
- 23. Establish that every monotone sequence is convergent if and only if it is bounded.
- 24. If $x_1 = 2, x_{n+1} = 2 + \frac{1}{x_n}, \forall n \ge 2$, find $\lim x_n$.
- 25. Let (x_n) be a bounded sequence and let s = sup{x_n: n ∈ N}. Show that if s ≠ x_n for any n, there is a subsequence of (x_n) that converges to s.
- 26. If $F \subseteq \mathbf{R}$ prove that F is closed if and only if it contains all its cluster points.
- 27. State and prove nested interval property.
- 28. Show that the Cantor set contains no nonempty open interval as a subset.

 $(6 \times 4 = 24 \text{ Marks})$

Part D. Answer any two questions. Each carries *fifteen* marks.

29. Let S and T be sets and T \subseteq S. Prove the following:

- (a) If S is countable, then T is countable.
- (b) If T is uncountable then S is uncountable.
- 30. Show that there exists a sequence of real numbers (S_n) that converges to $\sqrt{2}$.
- 31. (a) If $\lim x_n = x$ and $\lim y_n = y$, prove that $\lim \frac{x_n}{y_n} = \frac{x}{y}$.
 - (b) Discuss the convergence of the sequence x_n where:

(i)
$$x_n = \frac{(-1)^n n}{n^2 + 1}$$

(ii) $y_n = \frac{a^{n+1} + b^{n+1}}{a^n + b^n}$, where $0 < a < b$

 $(2 \times 15 = 30 \text{ Marks})$