(PAGES 2)

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2023 (Supplementary 2018 Admission) MATHEMATICS: Complementary Course to CHEMISTRY, PHYSICS & C.S. AMAT3C03T: MATHEMATICS

Time 3 Hours

Maximum Marks: 80

Part A: Answer all questions. Each carries one mark.

- 1. Solve the ODE $\frac{dy}{dx} + \frac{x}{y} = 0$.
- 2. Define a separable differential equation. Give one example of such an equation.
- 3. Prove that ydx + xdy is an exact differential equation.
- 4. Verify that the vectors $3\hat{i} 5\hat{j} + \hat{k}$ and $4\hat{i} + 2\hat{j} 2\hat{k}$ are orthogonal.
- 5. Write the formula for the component of a force in a given direction. Use suitable variables.
- 6. Write the condition that the vectors **a**, **b** and **c** are linearly independent.
- 7. Define curl of a vector field.
- 8. Write the formula for work done by a force $\mathbf{f}(t)$ along a vector $\mathbf{r}(t)$, $a \le t \le b$.
- 9. State the Green's theorem in a plane.

10. Evaluate the double integral
$$\int_{-1}^{1} \int_{0}^{1} dx dy$$
.

- 11. State the Stoke's theorem.
- 12. Find the sum of coefficients of terms of $(1 + x x^2)^{15}$.

(12 x 1 = 12 Marks)

Part B: Answer any nine questions. Each carries two marks.

13. Solve the initial value problem $\frac{dy}{dx} + y = 0$, y(0) = 1.

14. Verify that $y = e^{x^2/2}$ is a solution of the differential equation $\frac{dy}{dx} = x e^{x^2/2}$.

- 15. Solve the ODE $y' y = e^{2x}$.
- 16. Write the differential equation of all curves passing through the point (0, -1) and having slope at each point (x, y) as $\frac{y}{x}$.
- 17. For any two vectors **a** and **b**, prove that $|\mathbf{a} + \mathbf{b}|^2 + |\mathbf{a} \mathbf{b}|^2 = 2(|\mathbf{a}|^2 + |\mathbf{b}|^2)$.
- 18. Write the equation of the level curve for the function $f(x,y) = xy^2 + x 3y$ passing through the point (2,-2).

(PTO)

- 19. Find the gradient of the scalar function $f(x, y, z) = x^2y + 3x + yz^3$.
- 20. Evaluate the line integral of f(x,y) = xy along the curve $y = \frac{1}{x}$ from (1,1) to $(2,\frac{1}{2})$.
- 21. Write the surface integral of f(x,y) = xy over the hemisphere of $x^2 + y^2 + z^2 = 1$ above the *x*-*y* plane.
- 22. Evaluate $\int_{0}^{1} \int_{-1}^{1} \int_{-2}^{2} xyz \, dx \, dy \, dz.$
- 23. Write the third term in the expansion of e^{2+3x} .
- 24. Write the coefficient of x^{12} in the expansion of $\log(1 x^2/3)$.

(9 x 2 = 18 Marks)

Part C: Answer any six questions. Each carries five marks.

25. Solve $2yy' + y^2 \sin x = \sin x$, $y(0) = \sqrt{2}$.

26. Let $\mathbf{f}(x, y, z) = (x^2 - y)\hat{i} + (y + z)\hat{j} - yz^3\hat{k}$. Let $x = t^2$, $y = t^3$ and z = t. Find $\mathbf{f}'(t)$ and $\mathbf{f}''(t)$ at t = 2.

- 27. Prove that the gradient of a scalar field is a conservative vector field.
- 28. Test for path independence the line integral $\oint_{(0,0,0)}^{(1,1,1)} (2xyz^3 + 1) dx + (x^2z^3 + 4y) dy + 3x^2yz^2 dz.$
- 29. Using the method of double integrals, determine the area of the surface $x^2 + y^2 + z = 1$, $z \ge 0$.
- 30. Simplify $1 + \frac{1}{4}x + \frac{1 \cdot 4}{4 \cdot 8}x^2 + \frac{1 \cdot 4 \cdot 7}{4 \cdot 8 \cdot 12}x^3 + \cdots$ to ∞ .
- 31. What is the coefficient of x^n in the expansion of $e^{x/3}$?
- 32. Write the expansion of $(1-2x)\log(1+x^2)$ as ascending powers of x. (Write the first four terms.)
- 33. Obtain the series for $\log(1+3x-10x^2)$.

(6 x 5 = 30 Marks)

Part D: Answer any two questions. Each carries ten marks.

34. Sketch the curves given by the equation $x^2 - y^2 = c$. Find the slope of tangent at any point (x, y) on these curves. Also find the equation of the orthogonal trajectories of the family $x^2 - y^2 = c$.

- 35. a) Find the length of the curve $\mathbf{r}(t) = \cos t \hat{i} + \sin t \hat{j} + t \hat{k}, \quad 0 \le t \le 2\pi.$
 - b) Find the equation of the tangent plane at (1,2,-2) on the surface $5x^2y + y^2z x^3z = 4$.
- 36. Verify the divergence theorem for $\mathbf{F} = [x, y, z]$ and *S* is the surface of the sphere $x^2 + y^2 + z^2 = 9$.

 $(2 \times 10 = 20 \text{ Marks})$