Reg.No

Name:

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2023 (Regular/Improvement/Supplementary) ECONOMICS & MATHEMATICS (DOUBLE MAIN) GDMT3B03T: MULTIVARIABLE CALCULUS

Time: 2 1/2 Hours

Maximum Marks: 80

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 25 Marks)

- 1. Show that $\lim_{(x,y)\to(0,0)} \frac{x^2 y^2}{x^2 + y^2}$ does not exist.
- 2. Show that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ if $f(x, y) = \sin(xy) + x^3y^5 + x^4 y^2 + 8$.
- 3. Find $\frac{dy}{dx}$ if $x^3 + xy + y^2 = 4$.
- 4. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $2x^3z 3xy^2 + yz + 8 = 0$.
- 5. Find the critical points of $f(x, y) = x^4 + 3x^2y^3 + 4x^3y^2 + 5xy + 11$.
- 6. Define relative maximum value and relative minimum value.
- 7. State Lagrange's Theorem.
- 8. State The Extreme Value Theorem for functions of two variables.
- 9. Evaluate $\int_1^2 \int_0^1 3x^2 y \, dx \, dy$.
- 10. State Fubini's Theorem for Rectangular Regions.
- 11. Define the Jacobian of the transformation.
- 12. Find the gradient vector field of $f(x, y, z) = x^2 + y^2 + 2x^3z^4$.
- 13. Define Divergence of a Vector Field. When will we call a field solenoidal?
- 14. Find the curl of the vector field $F(x, y, z) = x^2 yz i + y^2 j + xyz k$.
- 15. Determine whether the vector field $F(x, y) = 2xy^2 i + x^2 y j$ is conservative.

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 35 Marks)

- 16. Find the second-order partial derivatives of $f(x, y) = x^3y^3 + x^6 + y^4 + 8 + e^{xy}$.
- 17. Let $w = x^2y xy^3$, where x = cost and $y = e^t$. Find $\frac{dw}{dt}$ and also find the value at t = 0.
- 18. Find the absolute extreme values of $f(x, y) = 2x^2 + y^2 2y + 1$, subject to the constraint $x^2 + y^2 \le 4$.
- 19. Show that the point is a critical point of $f(x, y) = y^2 x^2$, but that it does not give rise to a relative extremum of f.

- 20. Find the level curve of the function $f(x, y) = x^2 + y^2$ passing through the point P(2,0). Also find the gradient of f at P. Sketch the level curve and the gradient vector at P.
- 21. Evaluate $\int_0^1 \int_y^1 \frac{\sin x}{x} dx dy$.
- 22. Use a double integral to find the area enclosed by one loop of the three leaved rose $r = \sin 3\theta$.
- 23. Find the work done by the force field F(x, y, z) = -yi + xj + zk in moving a particle along the helix C described by the parametric equations $x = \cos t$, $y = \sin t$, z = t from (1,0,0) to $(0,1,\frac{\pi}{2})$.

SECTION C: Answer any two questions. Each carries ten marks.

- 24. Find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ where $w = x^2 + y^2 + z^2$, where $x = e^v \cos u$, $y = e^v \sin u$, $z = e^v u$.
- 25. Find the relative extrema of $f(x, y) = x^3 + y^2 2xy + 7x 8y + 2$.
- 26. Find the volume of the solid lying under the elliptic paraboloid $z = 8 2x^2 y^2$ and above the rectangular region $R = \{(x, y)/0 \le x \le 1, 0 \le y \le 2\}$.
- 27. Let $F(x, y) = 2xyi + (1 + x^2 y^2)j$.
 - a. Show that *F* is conservative and find a potential function *f* such that $F = \nabla f$.
 - b. If F is a force field, find the work done by F in moving a particle along any path from (1,0) to (2,3).

$(2 \times 10 = 20 \text{ Marks})$