(PAGES 2)

Reg	g.No	•••••	 	 •••••
	0			

Name:

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2023 COMPUTER SCIENCE AND MATHEMATICS (DOUBLE MAIN) GDCS3B05T: THEORY OF COMPUTATION

Time: 2 Hours

Maximum Marks: 60

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 20 Marks)

- 1. Define context free language.
- 2. What is recursive set?
- 3. Define finite automata.
- 4. Explain Regular Expression.
- 5. Draw a NFA to accept strings containing the substring 0101
- 6. Explain transition table and transition graph.
- 7. What are unit productions?
- 8. Construct a CFG for the language $L = \{a^n b^{2n} | n \ge 0\}$.
- 9. Define Turing Machine.
- 10. What is halting problem?
- 11. What is top down parser?
- 12. What do you mean by Empty Stack Acceptability?

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 30 Marks)

- 13. Explain Type1 grammar with example.
- 14. Differentiate between recursive and recursively enumerable set.
- 15. Explain algebraic laws for regular expression.
- 16. Elaborate on ambiguous grammar with example.
- 17. Find LMD & RMD, parse tree for the following grammar.

w = 00110101
S => 0B / 1A
A => 0/0S/1AA
B => 1/1S/0BB
B => 1/1S/OBB

18. Check whether the grammar S->Sa|aS|a is ambiguous or not.

19. Differentiate between DPADA and NDPDA.

SECTION C: Answer any one question. Each carries ten marks.

20. Construct a minimum state automata equivalent to the given automata.

21. Construct a Turing Machine that recognizes the language $0^n 1^n$.

(1 x 10 = 20 Marks)