(PAGES 2)

Reg. No..... Name:

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2023 HONOURS IN MATHEMATICS GMAH3B11T: CALCULUS III

Time: 3 Hours

Maximum Marks: 80

PART A: Answer all the questions. Each carries one mark.

Choose the correct answer.

1. The spherical Coordinates of the point $(1,0, -\sqrt{3})$ given in rectangular coordinates is _____.

A)
$$\left(2,\frac{\pi}{6},0\right)$$
 B) $\left(2,\frac{5\pi}{6},0\right)$ C) $\left(2,\frac{-\pi}{6},0\right)$ D) $\left(2,\frac{-5\pi}{6},0\right)$

2. The symmetric equations of the line L passing through the point $P_0(-1,2,3)$ and parallel to the vector v = < 2,1,-1 > are.

A)
$$\frac{x+1}{2} = y - 2 = 3 - z$$

B) $\frac{x-1}{2} = \frac{y-2}{2} = 3 - z$
D) $\frac{x+1}{2} = y - 2 = z - 3$
D) $\frac{x+1}{2} = y - 2 = 3 - z$

- 3. The standard form of the equation of a plane containing the point $P_0(x_0, y_0, z_0)$ and having the normal vector $\mathbf{n} = \langle a, b, c \rangle$ is ______.
- A) $a/(x x_0) + b/(y y_0) + c/(z z_0) = 0$ B) $a(x + x_0) + b(y + y_0) + c(z + z_0) = 0$ C) $(a - x_0) + (b - y_0) + (c - z_0) = 0$ D) $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$ 4. Let $f(x, y) = x^2y - 2x + 2y$. The value of f(1, 2) is ______. A) 2 B) 6 C) 4 D) -2 5. $\lim_{(x,y)\to(0,0)} \frac{2x^2y}{x^2 + y^2} = \frac{----}{2x^2 + 2y^2}$. A) 1 B) 0 C) 2 D) Limit does not exist.
- Fill in the Blanks.
- 6. A function is the quotient of two polynomial functions
- 7. If $f(x, y) = x \cos xy^2$ then $f_x =$ _____.
- 8. If u is a function of two variables x and y, the partial differential equation $u_{xx} + u_{yy} = 0$ is called ______.
- 9. The domain of the vector function $\mathbf{r}(t) = 2\mathbf{t}\mathbf{i} + \frac{2}{t}\mathbf{j}$ is_____.
- 10. Suppose that C is a plane curve with curvature K at the point P. Then the reciprocal of the curvature, $\rho = \frac{1}{K}$, is called the _____ of C at P.

(10 x 1 = 10 Marks)

PART B: Answer any *eight* questions. Each carries *two* marks.

- 11. Find the velocity vector and acceleration vector of an object that moves along the plane curve described by the position vector $\mathbf{r}(t) = 2 \cos t \mathbf{i} + 3 \sin t \mathbf{j}$.
- 12. Find $\int \mathbf{r}(t)dt$ if $\mathbf{r}(t) = (2t+1)\mathbf{i} + \sin 2t\mathbf{j} + e^{5t}\mathbf{k}$.
- 13. Show that $\lim_{(x,y)\to(0,0)}\frac{x^2-y^2}{2x^2+\nu^2}$ does not exist.

- 14. Find f_x and f_y if $f(x, y) = y \sin x^2 y$.
- 15. State Clairaut's Theorem.
- 16. Evaluate $\int_0^2 \int_1^3 5xy^3 dx dy$.
- 17. Let L_1 be the line with parametric equations x = 2 + 2t, y = 3 3t, z = 4 + t and
 - L_2 be the line with parametric equations x = 4 4t, y = 4 + 4t, z = -4 + 4t. Show that the lines L_1 and L_2 are not parallel to each other.
- 18. Find the distance between the point (2, -1, -3) and the plane 2x + 3y z = 2.
- 19. Sketch the graph of the cylinder $x^2 + y^2 = 4$.
- 20. Find the directional derivative of $f(x, y) = e^{2x} \sin y$ at the point $(0, \frac{\pi}{4})$ in the direction of $\mathbf{v} = 3\mathbf{i} + 2\mathbf{j}$.

(8 x 2 = 16 Marks)

PART C: Answer any six questions. Each carries four marks.

- 21. Prove that if a function f is differentiable at the point (x, y) and if $\nabla f(x, y) = 0$, then $D_{\mathbf{u}}f(x, y) = 0$ for every **u**.
- 22. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $4x^2z 2x^2y + xz 5 = 0$.
- 23. Let $f(x, y, z) = ze^{xy}$. Compute f_{xyz} and f_{zyx} .
- 24. Sketch the curve defined by the vector function $\mathbf{r}(t) = <2\cos t$, $-3\sin t >$, $0 \le t \le 2\pi$.
- 25. Find the interval(s) on which the vector function **r** defined by $\mathbf{r}(t) = t\mathbf{i} + (\frac{1}{t-1})\mathbf{j} + \sqrt{t} \mathbf{k}$ is continuous.
- 26. Find the anti derivative of $r'(t) = \sin t \, i + \sqrt{tj} + e^{3t}k$ satisfying the initial condition r(0) = i + 2j + 4k.
- 27. Find the angle between the two planes defined by 2x 3y + z = 1 and x + y z = 4.
- 28. Find the second order derivatives of the function $h(x, y) = \tan^{-1} \frac{y}{x}$ and check whether h(x, y) is a harmonic function.

(6 x 4 = 24 Marks)

PART D: Answer any two questions. Each carries fifteen marks.

- 29. Identify and sketch the surface $12x^2 3y^2 + 4z^2 + 12 = 0$.
- 30. a) Suppose that **r** is integrable on [a, b] and that c is a constant vector.

Prove that $\int_a^b c \cdot r(t) dt = c \cdot \int_a^b r(t) dt$.

b) Verify this property directly for the vector function $\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k}$,

c = 4i - 2j + 3k and $a = 0, b = \pi$.

31. Let
$$f(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{cases}$$
. Prove that $\lim_{x \to 0} f(x)$ does not exist.

 $(2 \times 15 = 30 \text{ Marks})$