No.....

Name:

THIRD SEMESTER UG EXAMINATION, NOVEMBER 2023 GMAH3B10T - REAL ANALYSIS I

Time: 3 hours

D3MAH2201

Maximum Marks: 80

Part A. Answer all the questions. Each question carries 1 mark.

Ch	oose the correct	answer.			
1.	Which one of the following is uncountable?				
	A) {1,2,3,4}	B) ℚ C) I	R D) ℕ		
2.	If $a, b \in \mathbb{R}$, then	$ a-b \leq$			
	A) $ a - b $	B) $ a + b $	C) $ a + b $	D) <i>ab</i>	
3.	$\lim_{n\to\infty}\sqrt{n+1}-\sqrt{n}$	$\sqrt{n} =$			
	A) ∞	B) 0	C) 1	D) 2	
4.	The series $\sum_{n=1}^{\infty}$	$\frac{\cos n}{n^2}$ is			
	A) Converge	ent B) Div	ergent C)	Oscillating	D) None of these
5.	5. Which of the following is compact				
	A) (0, 1)	B) ℝ C) [[0, 1] D) [1,	∞)	

Fill in the Blanks. Each question carries 1 mark

- 6. The set *A* of real numbers *x* such that $2x + 3 \le 7$ is ------
- 7. If $S = \left\{\frac{1}{n}; n \in \mathbb{N}\right\}$, then $\inf S = \dots$
- 8. The 3-tail of the sequence X = (2, 4, 6, ..., 2n, ...) is ------
- 9. The series $\sum \frac{1}{n^p}$ is convergent if ------
- 10. A subset of \mathbb{R} is closed if and only if it contains all of its -----

(10x1=10 Marks)

Part B. Answer any eight questions. Each question carries 2 marks.

- 11. Prove that $a \cdot a = a$ implies a = 0 or a = 1.
- 12. Let $I_n = [0, \frac{1}{n}]$; $n \in \mathbb{N}$. Prove that $\bigcap_{n=1}^{\infty} I_n = \{0\}$.
- 13. State monotone convergence theorem.
- 14. If a sequence is convergent, then it is bounded. Is the converse true? Justify your answer.
- 15. Find $\lim_{n \to \infty} \left(\frac{\sqrt{n}-1}{\sqrt{n}+1} \right)$
- 16. Prove that the sequence $(1, \frac{1}{2}, 3, \frac{1}{4}, \dots)$ is divergent.
- 17. State true or false, 'a Cauchy sequence of real number is unbounded'. Justify with an example.
- 18. Show that $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$ is divergent.
- 19. Give an example of a set which is neither open nor closed.
- 20. Exhibit an open cover of the interval (1, 2] that has no finite subcover.

(8x2=16 Marks)

Part C. Answer any six questions. Each question carries 4 marks.

- 21. Prove that union of countable sets are countable.
- 22. Determine the set $B = \left\{ x \in \mathbb{R}; \frac{2x+1}{x+2} < 1 \right\}$

23. Let (y_n) be a sequence defined by $y_1 = 1$, $y_{n+1} = \frac{1}{4}(2y_n + 3)$. Show that $\lim_{n \to \infty} y_n = \frac{3}{2}$.

24. Prove that a bounded sequence of real numbers has a convergent subsequence.

25. Let
$$x_n = \begin{cases} \frac{1}{1+n}, & \text{if } n \text{ is odd} \\ \frac{-1}{n}, & \text{if } n \text{ is even} \end{cases}$$
 be the n^{th} term of the sequence $X = (x_n)$. Find $\lim \sup x_n$

and $\lim \inf x_n$.

26. Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$. If convergent, find the limit of the series.

27. Show that

- (a) The union of an arbitrary collection of open subset in \mathbb{R} is open.
- (b) The intersection of an arbitrary collection of closed set in \mathbb{R} is closed.
- 28. Define compact set. Determine whether the set (0, 1) is compact. Justify ?

(6x4=24 Marks)

Part D. Answer any two questions. Each carries 15 marks.

- 29. State and prove the denumerability of the following sets,
 - (a) The set of rational numbers \mathbb{Q} .
 - (b) The set $\mathbb{N} \times \mathbb{N}$, where \mathbb{N} is the set of all natural numbers.
- 30. (a) State and prove Squeeze theorem.

(b) Using squeeze theorem find the limit of the sequences $\left(\frac{\sin n}{n}\right)$ and $\left(n^{\frac{1}{n^2}}\right)$.

- 31. (a) State Limit comparison test for the convergence of series and discuss the convergence of $\sum \frac{1}{n^2 n + 1}$.
 - (b) Prove that a subset \mathbb{R} is closed if and only if it contains all of its cluster points.

(2x15=30 Marks)