TOO	77	~	-	-	-	^	-
D3	IJ	·.				8 6	
10 10 10 10	E To			1		9 5	

(PAGES 2)

Reg.No)	
NT.		
Name:	***************************************	

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2022

(Regular/Improvement/Supplementary)

STATISTICS: COMPLEMENTARY COURSE FOR MATHEMATICS & COMPUTER SCIENCE GSTA3C03T: PROBABLITY DISTRUBUTION AND SAMPLING THEORY

Time: 2 Hours Maximum Marks: 60

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 20 Marks)

- 1. Derive the mean of Binomial distribution with parameters n and p.
- 2. State additive property of Gamma distribution.
- 3. Define convergence in probability.
- 4. If $X \to N(16, 2)$, find an upper bound for P(|X 16| > 6) using Chebychev's inequality.
- 5. Define population.
- 6. What is probability sampling?
- 7. Explain Lottery method in random sampling.
- 8. Define standard error. Give any three uses of standard error.
- 9. Write down the pdf of sample mean of a random sample of size n from a normal population with parameters μ and σ^2 .
- 10. State the additive property of Chi square distribution.
- 11. Write down the probability density function of Student t distribution. Indicate its important applications.
- 12. Give one example of a statistic following F distribution.

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 30 Marks)

- 13. If X and Y are independent binomial random variables with parameter n_1 and n_2 , find the distribution of X / X + Y.
- 14. For a continuous Uniform distribution, $f(x) = \frac{1}{2a}$; -a < X < a, show that $\mu_{2r} = \frac{a^{2r}}{2r+1}$.
- 15. A random variable X has mean 50 and variance 100. Use Chebyshev's inequality to obtain appropriate bounds for

(i)
$$P[|X - 50| \ge 15]$$

(ii) P{ Ix -
$$50 I < 20$$
}

- 16. Explain Bernoulli's law of large numbers with an example.
- 17. Describe cluster random sampling.
- 18. If X follows chi-square with n degrees of freedom, obtain the distribution of $\frac{X}{2}$.
- 19. Show that the mean deviation about mean of a t distribution with n degrees of freedom is

$$\frac{\sqrt{n}\sqrt{\frac{n-1}{2}}}{\sqrt{\pi}\sqrt{\frac{n}{2}}}$$

SECTION C: Answer any one question. Each carries ten marks.

- 20. (i) Define Normal distribution. What are the important properties of Normal distribution?
 - (ii) If X is normally distributed with mean 11 and SD 1.5, find the number k such that

(a)
$$P(X > k) = 0.3$$
 and

(b)
$$P(X < k) = 0.09$$

21. State and prove the Lindberg-Levy central limit theorem.

 $(1 \times 10 = 10 \text{ Marks})$