(PAGES 2)

Reg.No:	
Nama	

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2022 (Supplementary 2018 Admission)

MATHEMATICS: Complementary Course to CHEMISTRY, PHYSICS & C.S. AMAT3C03T: MATHEMATICS

Time 3 Hours

Maximum Marks: 80

Part A: Answer all questions. Each carries 1 mark.

- 1. Solve the ODE $\frac{dy}{dx} \frac{y}{x} = 0$.
- 2. Write the integrating factor of the linear differential equation $x\frac{dy}{dx} + y = \sin x$.
- 3. Define an exact differential equation. Give one example of such an equation.
- 4. Find λ such that the vectors $2\hat{i} + \hat{j} \lambda \hat{k}$ and $\hat{i} + 3\hat{j} + \hat{k}$ are orthogonal.
- 5. Write the formula for work done by a force making a displacement. Use suitable variables.
- 6. Write the condition that the vectors **a**, **b** and **c** are coplanar.
- 7. Define divergence of a vector field.
- 8. Write the formula for circulation of a flow given as $\mathbf{f}(t)$ along a curve $\mathbf{r}(t)$, $a \le t \le b$.
- 9. State the Green's theorem in a plane.
- 10. Evaluate the double integral $\int_{0}^{1} \int_{0}^{2} dx dy$.
- 11. State the Divergence theorem.
- 12. Find the sum of coefficients of terms of $(3-5x+2x^2)^{11}$.

 $(12 \times 1 = 12 \text{ Marks.})$

Part B: Answer any 9 questions. Each carries 2 marks.

- 13. Solve the initial value prolem $\frac{dy}{dx} xy = 0$, y(0) = 2.
- 14. Verify that $y = \tan(x+c)$ is a solution of the differential equation $\frac{dy}{dx} = 1 + y^2$.
- 15. Solve the ODE $y' + y \tan x = \sin 2x$.
- 16. Write the differential equation of all curves passing through the point (1,1) and having slope at each point (x,y) as 2xy.
- 17. If \mathbf{a} , \mathbf{b} and $\mathbf{a} + \mathbf{b}$ are unit vectors, then find the angle between the vectors \mathbf{a} and \mathbf{b} .
- 18. Write the equation of the level curve for the function $f(x,y) = x^2y 2x y$ passing through the point (3,-1).
- 19. Find the gradient of the scalar function $f(x, y, z) = x^2y + 3x + yz^3$.

(P.T.O.)

- 20. Evaluate the line integral of f(x,y) = 2x + 3y along the curve $y = x^2$ from (0,0) to (1,1).
- 21. Write the surface integral of f(x,y) = x + y over the hemisphere of $x^2 + y^2 + z^2 = 1$ above the x-y plane.
- 22. Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{0}^{4} xyz dx dy dz.$
- 23. Write the third term in the expansion of $(4-x)^{-1/2}$.
- 24. Write the coefficient of x^7 in the expansion of $\log(1-3x/4)$.

 $(9 \times 2 = 18 \text{ Marks.})$

Part C: Answer any 6 questions. Each carries 5 marks.

- 25. Solve $y' + (x+1)y = e^{x^2}y^3$, y(0) = 0.5.
- 26. Let $\mathbf{f}(x, y, z) = (x + 2y)\hat{i} + yz\hat{j} + 3xz^2\hat{k}$. Let x = 1 + t, $y = t^2$ and z = t. Find $\mathbf{f}'(t)$ and $\mathbf{f}''(t)$ at t = 2.
- 27. Define a scalar field and a vector field. Give one examle for each. Find the divergence of $\mathbf{f}(x, y, z) = x^3yz^2\hat{i} + xy^2z\hat{j} + (x y)z^3\hat{k}$.
- 28. Test for path independence the line integral $\oint_{(0,0,0)} (3x^2y^2z + z^2) dx + (2x^3yz + 1) dy + (x^3y^2 + 2xz) dz$.
- 29. Using the method of double integrals, determine the area of the hemisphere $x^2 + y^2 + z^2 = 1$, $z \ge 0$.
- 30. Simplify $1 + \frac{1}{3}x + \frac{1 \cdot 3}{3 \cdot 6}x^2 + \frac{1 \cdot 3 \cdot 5}{3 \cdot 6 \cdot 9}x^3 + \cdots$ to ∞ .
- 31. What is the coefficient of x^n in the expansion of $(1-x/2)^{-1}$?
- 32. Write the expansion of $(1+3x)e^{2+x}$ as ascending powers of x. (Write the first four terms.)
- 33. Obtain the series for $\log(1 5x + 6x^2)$.

 $(6 \times 5 = 30 \text{ Marks.})$

Part D: Answer any 2 questions. Each carries 10 marks.

- 34. Sketch the curves given by the equation $x^2y = c$. Find the slope of tangent at any point (x, y) on these curves. Also find the equation of the orthogonal trajectories of the family $x^2y = c$.
- 35. a) Find the length of the curve $\mathbf{r}(t) = \cos 2t \hat{i} + \sin 2t \hat{j} + 8t \hat{k}$, $0 \le t \le 2\pi$.
 - b) Find the maximum directional derivative at (1,1,1) on the surface $x^3(y+z) + y^2z^2 = 3$.
- 36. Verify the Stoke's theorem for $\mathbf{F} = [y^3, -x^3, 0]$ and S is $x^2 + y^2 \le 1$, z = 0. (2 × 10 = 20 Marks.)