

| Reg.No |  |
|--------|--|
|        |  |

| MT    |                           |
|-------|---------------------------|
| Name: | 7.1 . 1 3/6/11/6.4 7/11/2 |

#### THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2022

(Regular/Improvement/Supplementary)

## **ECONOMICS & MATHEMATICS (DOUBLE MAIN)**

#### GDEC3B03T: LINEAR PROGRAMMING AND PROBABILITY

Time: 2 1/2 Hours

Maximum Marks: 80

## SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 25 Marks)

- 1. Define convex set. Give one example.
- 2. Give two examples for convex polyhedron.
- 3. Write any two characteristics of canonical form of LPP.
- 4. Rewrite in standard form the following LPP:

Minimize 
$$z = 2x_1+x_2+4x_3$$
  
Subject to the constraints  
 $-2x_1 + 4x_2 \le 4$   
 $x_1 + 2x_2 + x_3 \ge 5$   
 $2x_1 + 3x_3 \le 2$   
 $x_1, x_2, x_3 \ge 0$ 

- 5. State the weak duality theorem.
- 6. Obtain the dual of the following LPP:

Maximize 
$$z = 2x_1-9x_2+x_3$$
  
Subject to the constraints  
 $-3x_1 + 6x_2 - x_3 \ge 4$   
 $2x_1 + x_2 + x_3 \le 1$   
 $x_1 + 7x_2 + 5x_3 \le 2$   
 $x_1, x_2, x_3 \ge 0$ 

- 7. What are the changes which are usually studied by post optimality analysis?
- 8. Define net evaluation for a linear programming problem.
- 9. State a balanced transportation problem as a linear programming problem.
- 10. Define a loop in a transportation table.
- 11. Distinguish between pure strategy and mixed strategy.
- 12. What do you mean by a saddle point of a game?
- 13. Define conditional probability.
- 14. Given p(A) = 0.30, p(B) = 0.78, and  $p(A \cap B) = 0.16$ . Find  $p(A^c \cap B^c)$
- 15. Define independent events.

# SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 35 Marks)

- 16. Prove that any convex linear combination of k different optimum solutions to an LPP is again an optimal solution to the problem.
- 17. "An animal feed company must produce 200 grams of a mixture containing the ingredients X and Y. X costs Rs.3 per gram and Y costs Rs.8 per gram. Not more than 80 grams of X can be used and minimum quantity to be used for Y is 60 grams. Find how much of each ingredient should be used if the company wants to minimize the cost." Formulate mathematically.

- 18. What is the role of artificial variables in the solution of LPP using simplex method?
- 19. Write the steps in cutting plane method to solve an AIPP.
- 20. Obtain an initial basic feasible solution to the following transportation problem using matrix minima method.

| 4714   | D1 | D2 | D3 | D4 | Capacity |
|--------|----|----|----|----|----------|
| 01     | 1  | 2  | 3  | 4  | 6        |
| O2     | 4  | 3  | 2  | 0  | 8        |
| O3     | 0  | 2  | 2  | 1  | 10       |
| Demand | 4  | 6  | 8  | 6  |          |

21. Solve the following assignment problem:

|     | A | В | C  | D |
|-----|---|---|----|---|
| I   | 1 | 4 | 6  | 3 |
| II  | 9 | 7 | 10 | 9 |
| III | 4 | 5 | 11 | 7 |
| IV  | 8 | 7 | 8  | 5 |

- 22. If A and B are two independent events, prove that
  - (i) A and B<sup>c</sup> are independent.
  - (ii) A<sup>c</sup> and B<sup>c</sup> are independent.
- 23. Define mutually exclusive events and equally likely events.

### SECTION C: Answer any two questions. Each carries ten marks.

24. Solve the following LPP:

Maximize  $z = 6x_1 + 4x_2$ 

Subject to the constraints

$$2x_1 + 3x_2 \le 30$$

$$3x_1 + 2x_2 \le 24$$

$$x_1+\ x_2\ \geq 3$$

$$x_1,\,x_2 \geq 0$$

25. Solve the following transportation problem:

|        | D1  | D2  | D3  | Capacity |
|--------|-----|-----|-----|----------|
| O1     | 50  | 30  | 220 | 1=1=     |
| O2     | 90  | 45  | 170 | 4        |
| O3     | 250 | 200 | 50  | 4        |
| Demand | 4   | 2   | 3   |          |
|        |     |     |     |          |

26. Solve the following 2 x 4 game graphically.

|          |    | Player B |    |    |    |  |
|----------|----|----------|----|----|----|--|
|          |    | B1       | B2 | B3 | B4 |  |
| Player A | A1 | 2        | 1  | 0  | -2 |  |
| Pla      | A2 | 1        | 0  | 3  | 2  |  |

27. State and prove Baye's theorem.