D3I	BEN	121	02

(PAGES 2)

Reg.No	D
--------	---

Name:

THIRD SEMESTER UG DEGREE EXAMINATION, NOVEMBER 2022 (Regular/Improvement/Supplementary)

ECONOMICS & MATHEMATICS (DOUBLE MAIN) GDMT3A01T: BASIC LOGIC, BOOLEAN ALGEBRA AND GRAPH THEORY

Time: 2 1/2 Hours

Maximum Marks: 80

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 25 Marks)

- 1. What do you mean by a proposition? Give examples and non-examples.
- 2. Verify $p \wedge p \equiv p$.
- 3. Negate the proposition, where x is an arbitrary integer $(\forall x)(x^2 > 0)$.
- 4. Prove that there is a positive integer that can be expressed in two different ways as the sum of two cubes.
- 5. What are the atoms of the lattice N of natural numbers ordered by divisibility?
- 6. Let A be any nonempty set and let P(A) be the power set of A ordered by set inclusion. What are the first and last elements of P(A)?
- 7. Draw the Hasse diagram of A = {1, 2, 3, 4, 6, 8, 9, 12, 18, 24} ordered by the relation "x divides y."
- 8. What is meant by a simple graph? Give an example.
- 9. Draw one 4-regular graph.
- 10. State true or false: A complete graph is a regular graph. Justify your claim.
- 11. Define the intersection of two subgraphs of a graph and give one example.
- 12. Define a cut vertex. Give one example.
- 13. Define Euler tour. Give one example
- 14. Find the number of faces of the given graph

15. Define a planar graph. Give one example.

SECTION B: Answer the following questions. Each carries five marks.

(Ceiling 35 Marks)

- 16. Rewrite each proposition symbolically, where UD= set of all real numbers.
 - (i) For all integers x and y, xy=yx
 - (ii) There are integers x and y such that x+y=5
- 17. Prove indirectly: If the square of an integer is odd, then the integer is odd.
- 18. Let L be a complemented lattice with unique complements. Then show that the join irreducible elements of L, other than 0, are its atoms.
- 19. State and prove the idempotent law for lattices.
- 20. Prove that it is impossible to have a group of nine people at a party such that each one knows exactly five of the others in the group.
- 21. List the degrees of each of the vertices in the following graph G. Also specify the number of odd and even vertices of G

22. Find k(G) for the following graph

23. Let G be a simple graph with n vertices and let u and v be non-adjacent vertices in G such that $d(u) + d(v) \ge n$. Let G + uv denote the supergraph of G obtained by joining u and v by an edge. Prove that G is Hamiltonian iff G + uv is Hamiltonian.

SECTION C: Answer any two questions. Each carries ten marks.

- 24. Construct truth table for each proposition $(i)(p \land q) \rightarrow \sim p(ii)(p \lor q) \rightarrow (p \land q)$
- 25. Define consistent enumeration of a finite poset and prove that there exists a consistent enumeration for any finite posetA.
- 26. Let G be a nonempty graph with at least two vertices. Prove that G is bipartite if and only if it has no odd cycles.
- 27. a) Let u and v be distinct vertices of a tree T. Show that there is precisely one path from u to vb) Let G be a graph without any loops. Prove that if for every pair of distinct vertices u and vof G if there is precisely one path from u to v then G is a tree.

 $(2 \times 10 = 20 \text{ Marks})$