QI	QP CODE: D2BCA2403 (Pages: 3)	Reg. No :	Reg. No:				
		Name :					
	SECOND SEMESTER FYUGP EXAM	IINATION, APRIL 2025					
	MAJOR COURS	SE					
	BCA2CJ103 : NUMERICAL ANALYSIS AND	OPTIMIZATION TECHNIQUES					
	(Credits: 4)						
TI	Time: 2 Hours	Maximum	Mark	s: 70			
	Section A						
	Answer the following questions. Each carrie	es 3 marks (Ceiling: 24 marks)					
1.	. Given the equation $f(x) = x^3 - 4$, apply the first iteration for the find an approximate root in $[1, 2]$.	ation of the Method of False	BL2	CO1			
2.	Give the Trapezoidal formula to find $\int_a^b f(x) \; dx$.						
3.	Define Artificial variable. Give an example.						
4.	Write a short note on Least Cost Entry Method.						
5.	Find the value at $x = 1.5$ for the data points $(1, 2)$ and $(2, 3)$ using Lagrange interpolation formula.						
6.	 b. Define the terms. a) Key Column b) Key Row c) Key element 		BL1	CO4			
7.	What is a Balanced Transportation Problem? Give an example.						
8.	Find $\int_1^5 rac{1}{2x+1} \ dx$ using Simpson's $1/3^{rd}$ rule with $\ n=4.$						
9.	A farmer has 10 acres of land and wants to plant wheat and corn. Each acre of wheat requires ₹2000 for planting and provides a profit of ₹3000. Each acre of corn requires ₹3000 for planting and provides a profit of ₹5000. The total budget available is ₹24,000. Formulate the Linear Programming Problem to maximize profit.						
10	0. Solve the following assignment problem. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(PTO)	BL2	CO6			

						Section B		
	Answert	the f	ollov	ving	que	tions. Each carries 6 marks (Ceili	ng: 36 Marks)	
11. Given $f(x)=x^3-5x+1$, find a root near $x_0=1$ correct to three decimal places using Newton-Raphson method .								2 CO′
12.	12. Use Newton's Forward Interpolation to estimate f(1.8) for the following data. $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$							
13. Write the dual of the following LPP: Minimize $Z = 5x_1 + 2x_2 + 4x_3$ Subject to: $-4x_2 + 2x_3 \ge 18$ $3x_1 - 2x_2 + 6x_3 \le 9$ $2x_1 - 3x_3 \le 22$ $x_1, x_2, x_3 \ge 0$							BL2	2 CO4
14.	Find an initial fe approximation M Source/Dest. 1 2 3 4 Demand	/letho		$\frac{C}{3}$	n to t D 3 2 3 4 17	e transportation problem given belo <u>Supply</u> <u>34</u> 15 12 19	w, by Vogel's BL2	CO
15.	Find $\int_{-1}^2 rac{2x}{x+2} \ dx$	e usir	ng Si	mpso	on's	$/8^{th}$ rule with $n=6.$	BL2	
16. Solve the following problem graphically: Max : $Z = 40x_1 + 80x_2$ S.t : $2x_1 + 3x_2 \le 48$ $0 \le x_1 \le 5$ $0 \le x_2 \le 10$							BL2	2 CO4
17.	Find the initial fe West Corner Ru Source/Dest. 1 2 3 4 Demand	ıle. A	<i>B</i> 5	$\frac{C}{3}$	n to <u>D</u> 3 2 3 4 17	ne transportation problem given belo Supply 34 15 12 19	ow, by North BL2	CO
	Write a short no							

Section C									
	Answe	er an	y one	e que	tion. Each carries 10 marks (1 x 1	0 = 10 Marks)			
19.	Apply the Bisection Method to find the approximate root of the equation $f(x) = x^3 - x - 1$ in the interval $[1, 2]$ perform ten iterations. Show all calculations.						2 CO1		
20.	Solve the following Transportation problem.								
	Source/Dest.	D_1	D_2	D_3	Supply				
	S_1	2	7	4	5				
	S_2		3		8				
	S_3	5	4	7	7				
	$_S_4$	1	6	2	14				
	Demand	7	9	18					
	CO : Course O	utco	me						
	BL : Bloom's Taxonomy Levels (1 – Remember, 2 – Understand, 3 – Apply, 4 – Analyse, 5 – Evaluate, 6 – Create)								