QF	P CODE: D2BIB240)2		(Pages: 2)	Reg. No	•					
						Name					
		SECOND	SEMESTER	R FYUGP EX/	AMINATION,	APRIL 2025					
			I	MAJOR COU	RSE						
			BIB2CJ10	2 : BUSINES	S STATISTIC	S					
				(Credits:	4)						
Tir	me: 2 Hours						Maximun	n Marks	s: 70		
				Section A	\						
	Answ	er the follow	ing questio	ons. Each cai	rries 3 marks	(Ceiling: 24	marks)				
1.	Define Mean devia	ation.						BL1	CO1		
2.	What is meant by	kurtosis? Hov	v do you me	asure kurtosi	s?			BL1	CO1		
3.	Find Quartile devia	ation for the f	ollowing data	a.23, 25, 20, 4	45, 85, 36, 24	, 10, 19, 59, 1	8, and 65.	BL2	CO1		
4.	Find the Bowley's 28, 30, 35, 14, 34,				ving data.			BL2	CO1		
5.	Define arithmetic r	nean. State a	iny two meri	ts and demer	its of arithmet	ic mean		BL1	CO1		
6.	Define chain index	number						BL1	CO2		
7.	What are seasona	l variations o	f time series	?				BL1	CO2		
8.	Define regression	analysis.						BL1	CO3		
9.	Define classical de	efinition of pro	obability					BL1	CO4		
10.	Define Union, inter	rsection and	complement	of a set. Give	e example			BL1	CO4		
				Section B	}						
	Answ	er the follow	ving questio	ons. Each ca	rries 6 marks	s (Ceiling: 36	Marks)				
11.	Calculate mean f	or the data gi	ven below:					BL2	CO1		
	Class	0 - 6	7 - 13	14 - 20	21 - 27	28 - 34	35 - 41				
	Frequency	8	17	28	15	9	3				
12.	Find the Standard	Find the Standard deviation of the following frequency distribution.									
	x	5	10		15	20	25				
	Frequency	8	15		28	40	5				
							(PTC))			

	Compute Pearson's coefficient of skewness from the following data.									BL2	CO1	
	Class		0 – 10	C	10 – 2	0 2	0 – 30	30 – 4	40	40 – 50		
	f		3		5		9	21		2		
14.	Prices of a particular commodity in 5 years in 2 cities are given below.											CO1
	Price in city A		22		24		19	2	1	17		
	Price in city B		18		20		18	1:	5	19		
	Find from the above data the city which has more stable price.											
15.	Explain any thre	e prob	lems i	n the co	onstructi	on of an in	dex numb	oer.			BL1	CO2
16.	What is meant by trend? How would you fit a parabolic trend by the method of least squares?										BL1	CO2
7.	. Calculate the coefficient of rank correlation from the following data :										BL2	CO3
	X: 35 1	5 3	0	22	12	5 2	8 18	41	4			
	Y: 39 25	52	2	28	12	17 1	8 19	34	16			
	that it will be w	nite.										
						Section	C					
			r any	one qu	estion.	Section Each carr		urks (1 x 1	10 = 10 N	larks)		
19.		Answe le. Stat	e the i	importa	nt merits	Each carr	ies 10 ma erits of mo		10 = 10 N	larks)	BL3	CO1
9.	(a) Define mod	Answe le. Stat	e the i and m	importa	nt merits	Each carr	ies 10 ma erits of mo		10 = 10 N 30 –35	larks) 35 - 40	BL3	CO1
19.	(a) Define moc (b) Compute m	Answe le. Stat	e the i and m	importa ode for	nt merits the follo	Each carr	ies 10 ma	ode.	Γ		BL3	CO1
	(a) Define mod (b) Compute m Class Frequency	Answe le. Stat nedian 0 – 5	e the i and m 5	importal ode for 5 – 10 8	nt merits the follo 10 –15 7	Each carr and demo wing data 5 15 –20 12	ies 10 ma erits of mo 20 –25 28	ode. 25 –30 20	30 –35 13	35 - 40 7		
	(a) Define mod (b) Compute m Class	Answe le. Stat nedian 0 – 5	e the i and m 5	importal ode for 5 – 10 8	nt merits the follo 10 –15 7 ollowing	Each carr and demo wing data 5 15 –20 12	ies 10 ma erits of mo 20 –25 28 ries . Also	25 –30 20 interpret	30 –35 13 the resul	35 - 40 7		
	(a) Define mod (b) Compute m Class Frequency Establish corre	Answe le. Stat nedian 0 – 5 elation l	e the i and m 5 { 8	importan ode for 5 – 10 8 en the fo	nt merits the follo 10 –15 7 ollowing 24	Each carr s and demo wing data 5 15 –20 12 pair of se	ies 10 ma erits of mo 20 –25 28 ries . Also 30	25 –30 20 interpret	30 –35 13 the resul	35 - 40 7		CO1
	(a) Define mod (b) Compute m Class Frequency Establish corre Series I : 17	Answe le. Stat nedian 0 – 5 elation l 19	e the i and m 5 { 8 betwee 20	importan ode for 5 – 10 8 en the fo 22	nt merits the follo 10 –15 7 ollowing 24	Each carr s and demo wing data 5 15 –20 12 12 pair of se 27 29	ies 10 ma erits of mo 20 –25 28 ries . Also 30	ode. 25 –30 20 interpret 33 35	30 –35 13 the resul	35 - 40 7		
	(a) Define mod (b) Compute m Class Frequency Establish corre Series I : 17	Answe le. Stat nedian a 0 – 5 elation k 19 85	e the i and m 5 { 20 80	importan ode for 5 – 10 8 en the fo 22	nt merits the follo 10 –15 7 ollowing 24	Each carr s and demo wing data 5 15 –20 12 12 pair of se 27 29	ies 10 ma erits of mo 20 –25 28 ries . Also 30	ode. 25 –30 20 interpret 33 35	30 –35 13 the resul	35 - 40 7		
19.	(a) Define mod (b) Compute m Class Frequency Establish corre Series I : 17 Series II : 87	Answe le. Stat nedian 0 – 5 elation l 19 85 utcom	e the i and m 5 { 20 80 e	importan ode for 5 – 10 8 en the fo 22 78	nt merits the follo 10 –15 7 ollowing 24 75	Each carr and demo wing data 5 15 –20 12 pair of se 27 29 72 70	ies 10 ma erits of mo 20 –25 28 ries . Also 30 65	ode. 25 –30 20 0 interpret 33 35 62 60	30 –35 13 the resul	35 - 40 7 t:	BL2	CO3