QP CODE: D2BMT2404		(Pages: 2)	Reg. No :	Reg. No :			
	Name :						
	SECOND SEN	IESTER FYUGP EXAMIN	ATION, APRIL 202	25			
		MAJOR COURSE					
	MAI2	CJ102 : Elementary Num (Credits: 4)	ber Theory				
Tir	me: 2 Hours		N	/laximum Mark	s [.] 70		
		Section A			0.70		
	Answer the following	questions. Each carries 3	3 marks (Ceiling:	24 marks)			
1.	Find $gcd(12, -30); gcd(-8, 17)$); gcd(-4, -36).		BL	8 CO1		
2.	Which of the following Diopha $(a)7x + 5y = 19$ (b)200x + 150y = 1700 (c)12x + 18y = 35	antine equations cannot be	solved.	BL2	CO2		
3.	Define pseudoprime numbers	to the base a and give two	o examples.	BL	CO3		
4.	Find the sum of positive integ	ers less than 40 and relativ	vely prime to 40.	BL	s coa		
5.	Find $lcm(3054, 12378)$.			BL3	3 CO1		
6.	State division algorithm. Illust	rate an example.		BL2	2 CO1		
7.	Solve the equation $26x+39y$	r=1 to obtain one integer s	solution.	BL	5 CO2		
8.	Use Fermat's theorem to find	the remainder when 5^{38} is	divided by 11.	BL	B CO3		
9.	Arrange 2,3,4,21 in pairs <i>a</i>	a and b that satisfy $ab\equiv 1(r)$	mod 23).	BL	8 CO3		
10.	Find the solution of the syster	${\mathfrak m} \ {11x+5y} \equiv 7(mod20) \ {6x+3y} \equiv 8(mod20)$		BL	8 CO3		
		Section B					
	Answer the following	questions. Each carries	6 marks (Ceiling:	36 Marks)			
11.	Use Mathematical induction to	o prove that 21 $divides$ (4^n)	$^{+1} + 5^{2n-1}).$	BL: (PTO)	8 CO1		

12.	List 12 prime numbers p such that $p^2 - 1$ is a composite number. Justify your answer.	BL4	CO2		
13.	3. Solve the linear congruence $34x \equiv 60 (mod 98).$				
14.	Find the last two digits of 3^{431} using Euler's theorem.	BL3	CO3		
15.	Prove that for $n > 1$ and a, b, c, d arbitrary integers the following holds: (i) $a \equiv a \pmod{n}$ (ii) If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$. (iii) If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$ and $ac \equiv bd \pmod{n}$,	BL1	CO3		
16.	Find the $gcd(24,138)$ and hence express it in the form $24x + 138y$.	BL5	CO1		
17.	Prove that the number $\sqrt{2}$ is irrational.	BL4	CO2		
18.	Prove that the integer $111^{333}+333^{111}$ is divisible by 7.	BL3	CO3		
	Section C				
	Answer any one question. Each carries 10 marks (1 x 10 = 10 Marks))			
19.	Prove that there is an infinite number of primes.	BL1	CO2		
20.	Prove that $\phi(n+2)=\phi(n)+2$ for $n=12,14,20$	BL4	CO3		
	CO : Course Outcome				
	BL : Bloom's Taxonomy Levels (1 – Remember, 2 – Understand, 3 – Apply, 4 – Analyse, 5 – Evaluate, 6 – Create)				