QP CODE: D2BAM2402		(Pages:	3) F	Reg. No	•		
			٦	lame	•		
	SEC	OND SEMESTER FYUGP	EXAMINATION, API	RIL 2025			
		MINOR CO	DURSE				
		AMA2MN104 : Graph T	heory and Automat	a			
		(Credit	s: 4)				
Time	: 2 Hours					Maximun	n Marks: 70
		Sectio	n A				
	Answer the f	ollowing questions. Each		eiling: 24	1 ma	arks)	
1.	Find the number of vertice each vertex.	ices and edges of the graph	given below. Also fi	nd the de	gree	e of BL2	CO1
2.	Define the following. i. Path ii Cycle iii. Circuit					BL2	CO1
3.	regions. compute the nu	aph contains 10 vertices and umber of edges in the graph ph contains 24 edges. It divi vertices in the graph.				BL2	CO1
4.	Define the length of wor	rd. Write the properties of ler	ngth.			BL1	CO3
5.	Draw the graph with adj $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$	acency matrix.				BL2	CO1
6.	Define bipartite and con	nplete bipartite graph. Give e	example for each.			BL2	CO1
7.	Distinguish between cyc	cle and circuit. Give example	∍ for each.		(P	BL1 PTO)	CO1, CO2

8.	$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	0 0 0	0 0 1 0 0 0	ency matrix	and write its	s propertie	S.		BL2	CO1
9.	Define Klee	ene Closur	e of a Lang	uage.					BL1	CO3
10.		Draw the transition diagram of the FSA, M = (S,A,I,F,s ₀) where I = {a,b}, and S = {s _{0,} s ₁ ,s ₂ }, A={s ₂ }.				BL2	CO3			
					Section B					
	•	Answer the	e following	g questions	s. Each carr	ies 6 mar	ks (Ceiling: 3	6 Marks)	
11.	Among a group of 5 people, is it possible for everyone to be friends with exactly 2 of the people in the group? What about 3 of the people in the group? Explain using the conecpt of graph theory.				BL3	CO1				
12.	Give an example for a graph which is: i. Eulerian but not Hamiltonian. ii. Hamiltonian but not Eulerian and give justification for each.				BL2	CO1, CO2				
13.	College. Th	ne registrar	would like	to develop	a conflict-fre	e final exa	at Konigsber am schedule u t of graph the Course G	ising as	BL4	CO1
	Boole Bourbaki Cantor Ford Hamilton	Cantor Euler Newton Pascal Russel	Clinton Euler Gauss Newton Nobel	Boole Ford Hamilton Hardy Pascal	Boole Cantor Cauchy Fibonacci Newton	Abel Ford Gauss Nobel Russel	Abel Boole Cauchy Cayley Hardy			
14.	Let N={A,B, σ }, T={a,b} and P={ $\sigma \rightarrow aA, A \rightarrow bA, A \rightarrow a$ }. Then G={N, T, P, σ } is a grammar. Draw a derivation tree for each word in L(G). a) ab b) a^4b					BL2	CO3			
15.	Let A, B, C example.	and D be a	any langua	ge over ∑. ⁻	Then prove o	or disprove	e the following) with an	BL2	CO3

16.	Are the graphs G1 and G2 given below are isomorphic ? Show details of work.	BL1	CO1
	v^{5} v^{1} v^{2} v^{2} v^{3} G_{1} v^{2} G_{2}		
17.	Use Dirac's theorem and Ore's theorem to determine whether the graph is Hamiltionian. Construct a circuit if it exists.If not, is it possible to construct a Hamitonian path.	BL2	CO1, CO2
18.	 For each description given, either draw a planar graph that meets the description or prove that no planar graph can meet the description given. (a) A simple graph with 5 vertices and 8 edges. (b) A simple graph with 6 vertices and 13 edges. (c) A simple bipartite graph with 7 vertices and 10 edges. (d) A simple bipartite graph with 7 vertices and 11 edges. 	BL3	CO1
	Section C		
	Answer any one question. Each carries 10 marks (1 x 10 = 10 Marks)		
19.	Let G be a simple graph with n vertices $v_1, v_2,, v_n$ and adjacency matrix $A=[a_{ij}]_{n\times n}$. Let $B=[b_{ij}]_{n\times n}$, where $b_{ij} = -a_{ij}$ if i not equal to j $b_{ij} = deg(v_i)$ if i equal to j Let C be the (n-1)x(n-1) matrix obtained by deleting row 1 and column 1 of B. Then thenumber of nonisomorphic sapnning trees of G is the determinant, C . Using this fact find the number of nonisomorphic spanning trees of K ₅ .	BL3	CO1
20.	a) Find the language L(G) generated by the grammar G=(N,T,P, σ) where N = { σ , A,B} T={a,b}, P={ $\sigma \rightarrow aA, A \rightarrow Bb, A \rightarrow a, B \rightarrow b$ } b) Draw a derivation tree for the production rule P where N={ σ , A, B}, T={a,b}, P={ $\sigma \rightarrow aAa, A \rightarrow bBb, \sigma \rightarrow \lambda, A \rightarrow a, B \rightarrow a, B \rightarrow b$ }.	BL2	CO3
	CO : Course Outcome		
	BL : Bloom's Taxonomy Levels (1 – Remember, 2 – Understand, 3 – Apply, 4 – Analyse, 5 – Evaluate, 6 – Crea	te)	