QF	QP CODE: D2BMT2405 (Pages: 2) Reg. No :			
	Name :	Name :		
	SECOND SEMESTER FYUGP EXAMINATION, APRIL 2025			
	MINOR COURSE			
	MAT2MN102 : Calculus and Matrix Algebra			
	(Credits: 4)			
Ti		num Ma	rks: 70	
	Section A			
	Answer the following questions. Each carries 3 marks (Ceiling: 24 m	-		
1.	Solve the initial value problem $rac{dy}{dt}=rac{1}{t},y(-1)=5.$	BL1	CO1	
2.	State Fundamental Theorem of Calculus, Part 2.	BL1	CO1	
3.	Write the partial fraction decomposition form of $\frac{5}{x(x^2-4)}$.	BL2	CO1	
4.	Evaluate $\int x cos 2x \ dx$.	BL2	CO1	
5.	Describe the graph of the function $f(x,y) = 1 - x - rac{1}{2}y$ in an xyz coordinate system.	BL1	CO2	
6.	Find the largest region on which the function $f(x,y)=sin^{-1}(xy)$ is continuous	BL2	CO2	
7.	Evaluate $\lim_{(x,y)\to(0,0)} e^{-(\frac{1}{x^2+y^2})}$ using the substitution $z = x^2 + y^2$ (Hint: $z \to 0^+$ if and only if $(x,y) \to (0,0)$).	BL3	CO2	
8.	Define diagonal matrix and scalar matrix and give example for each matrix.	BL1	CO3	
9.	Find the eigenvalues of $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{bmatrix}$.	BL3	CO3	
10.	Suppose A is an orthogonal matrix. Is A^2 orthogonal ?	BL2	CO3	
	Section B			
	Answer the following questions. Each carries 6 marks (Ceiling: 36 M	arks)		
11.	Sketch the region whose signed area is represented by the definite integral,and evaluate the integral using an appropriate formula from geometry. (PTO)	BL2	CO1	

	(a) $\int_{0}^{4} x \ dx$ (b) $\int_{0}^{3} (1 - \frac{x}{2}) \ dx$				
12.	Evaluate the following integrals. (a) $\int t^4 \sqrt[3]{3-5t^5} dt$ (b) $\int cos 2t sin^5 2t dt$	BL2	CO1		
13.	Evaluate (a) $\int_0^2 3x^2(1+x^3)^3 \ dx$ (b) $\int_{-ln3}^{ln3} rac{e^x}{e^x+4} \ dx$.	BL2	CO1		
14.	Find the arc length of the curve $y=x^{rac{3}{2}}$ from $(1,1)$ to $(2,2\sqrt{2}).$	BL3	CO1		
15.	Let $f(x, y) = xe^{-y} + 5y$. (a) Find the slope of the surface $z = f(x, y)$ in the <i>x</i> -direction at the point (3,0). (b) Find the slope of the surface $z = f(x, y)$ in the <i>y</i> -direction at the point (3,0).	BL3	CO2		
16.	Confirm that the mixed second-order partial derivatives of $f(x,y)=4x^2-8xy^4+7y^5-3$ are the same.	BL3	CO2		
17.	Solve $egin{array}{ll} x_1-x_2-x_3&=8\ x_1-x_2+x_3&=3\ -x_1+x_2+x_3&=4 \end{array}$	BL2	CO3		
18.	Construct an orthogonal matrix from the eigenvectors of the symmetric matrix $A = \begin{pmatrix} 1 & 9 \\ 9 & 1 \end{pmatrix}$.	BL3	CO3		
	Section C				
	Answer any one question. Each carries 10 marks (1 x 10 = 10 Mark	s)			
19.	Sketch the region and find the area of the region that is enclosed between the curves $y = x^2$ and $y = x + 6$.	BL3	CO1		
20.	Find eigenvalues and eigenvectors of $A=\left(egin{array}{cc} -1 & 2 \\ -7 & 8 \end{array} ight).$	BL3	CO3		
	CO : Course Outcome				
	BL : Bloom's Taxonomy Levels (1 – Remember, 2 – Understand, 3 – Apply, 4 – Analys 5 – Evaluate, 6 – Create)				