QP CODE: D2BCH2401		(Pages: 2) Reg. N		lo :				
		٨	lame	•				
SECOND SEMESTER FYUGP EXAMINATION, APRIL 2025								
MAJOR COURSE								
CHE2CJ101 : Physical Chemistry - I : States of Matter								
(Credits: 4)								
Tir	Time: 2 Hours Maximum Marks: 70							
Section A								
	Answer the following	questions. Each carries 3 marks	(Celling	g: 24 mar	(S)			
1.	Define critical temperature of	a gas.	B	BL1	CO1			
2.	How does the strength of intermolecular forces affect the boiling point of a liquid			BL1	CO1, CO3			
3.	Differentiate between crystalline and amorphous solids.			BL1	CO4			
4.	At what temperature will a 0.2 molal solution of sucrose boil if Kb of water is 0.52 Kkgmol-1. [Boiling point of water = 373 K].			3L2	CO6			
5.	How does viscosity depend upon the cohesive forces in a liquid? How does viscosity of liquid vary with temperature?			3L1	CO3			
6.	Calculate the average velocit	y of CO molecules at STP.	B	BL2	CO1			
7.	Mention any three limitations of Henry's law.		B	BL2	CO6			
8.	Discuss the powder diffraction pattern of CsCl crystals.			BL2	CO5			
9.	Briefly explain two important applications of reverse osmosis.		B	BL1	CO6			
10.	Calculate the average transla degree celsius. What will be t	tional KE of an ideal gas per mole a he average KE per molecule?	at 25 B	BL3	CO1			
Section B								
Answer the following questions. Each carries 6 marks (Ceiling: 36 Marks)								
11.	Calculate the collision frequent K and 0.7895 atm, given its c	ncy and mean free path of a gas at ollision diameter = 36.1 nm.	298 B	BL2	CO1			
12.	Discuss the importance of hy	drogen bonding in biological system	ns. B (PTO)	3L1	СОЗ			

13.	What is packing fraction? Compute the packing fraction in bcc crystal lattice.		CO4				
14.	A solution prepared by dissolving 0.25 g of a non-volatile solute in 50 mL of an organic solvent (molecular mass = 154; density = 1.58 g/mL) at 303 K is found to have a vapour pressure of 141.9 mm of Hg. If the vapour pressure of the pure solvent at 303 K is 143 mm of Hg, calculate the molar mass of the solute.		CO6				
15.	The vapour pressure of pure benzene at 303 K is 119.6 mm of Hg. Calculate the vapour pressure of a 0.5 molal solution of a non-volatile solute in benzene at 303 K.		CO6				
16.	Distinguish between superhydrophilic and superhydrophobic surfaces	BL1	CO3				
17.	Copper crystallizes in a face-centered cubic (FCC) lattice with a cell dimension of 361 pm. Calculate the interplanar distance between the (200) planes.	BL3	CO4				
18.	How the interplanar distance ratio can be used to identify the lattice type in crystals?	BL2	CO4				
Section C							
Answer any one question. Each carries 10 marks (1 x 10 = 10 Marks)							
19.	Discuss Andrew's experiments on the isotherms of CO ₂ and bring out the idea of continuity of states.	BL2	CO1				
20.	Briefly explain the principle, method, and basic instrumentation of the technique nephelometry.	BL2	CO6				
	CO : Course Outcome						
	BL : Bloom's Taxonomy Levels (1 – Remember, 2 – Understand, 3 – Apply, 4 – Analyse, 5 – Evaluate, 6 – Create)						