D2BCA	.1803	(S5)
-------	-------	------

(PAGES 3)

Reg. No

Name:

SECOND SEMESTER UG DEGREE EXAMINATION, APRIL 2024

(Supplementary- 2018 Admission)

BCA

CBCA2C04T: OPERATIONS RESEARCH

Time: 3 Hours Maximum Marks: 80

PART A: Answer all the questions. Each carries one mark.

- 1. Define dummy activity.
- 2. Define total elapsed time.
- 3. What is mathematical model?
- 4. Define feasible solution of a transportation problem.
- 5. What is a constraint?
- 6. What is critical path?
- 7. Write one application of Linear programming.
- 8. What is a network diagram?
- 9. How do you find the cell for allotment in VAM?
- 10. Write any two similarities between CPM and PERT.

 $(10 \times 1 = 10 \text{ Marks})$

PART B: Answer all the questions. Each carries two marks

- 11. What is unbalanced transportation problem?
- 12. Write the difference between transportation problem and assignment problem.
- 13. What are slack and surplus variables?
- 14. Define: (a) free float, (b) independent float.
- 15. What is a network diagram?
- 16. Explain Two Phase method.
- 17. Define Sequencing problem.
- 18. State the fundamental properties of duality.

 $(8 \times 2 = 16 \text{ Marks})$

(PTO)

PART C: Answer any six questions. Each carries four marks.

- 19. Write a short note on degeneracy in transportation problem.
- 20. What are the phases of Operations Research?
- 21. Explain Least cost entry method.
- 22. Solve the following LPP graphically:

Minimize

$$Z = 5x_1 + 8x_2$$

Subject to

$$6x_1 + 2x_2 \ge 12$$
; $2x_1 + 2x_2 \ge 8$; $4x_1 + 12x_2 \ge 24$; $x_1, x_2 \ge 0$

- 23. What is travelling salesman problem?
- 24. Write any two assumptions used for solving sequence problem.
- 25. Find initial basic feasible solution for the following transportation problem by using Vogel's method:

Origin		Availability		
Origin	A	В	С	<u> </u>
W	2	7	4	5
X	3	3	1	8
Y	5	4	7	7
Z	1	6	2	14
Requirement	7	9	18	34

26. Draw the network diagram for the following table:

Activity	A	В	С	D	Е	F	G	Н	I	J	K
Predecessor	-	A	В	С	В	Е	D,F	E	Н	G,I	J

27. Explain the Hungarian method for solving assignment problem.

 $(6 \times 4 = 24 \text{ Marks})$

PART D: Answer any three questions. Each carries ten marks.

28. Use dual simplex method to solve the following LPP:

Minimize

$$Z = 3X_1 + X_2$$

subject to the constraints

$$X_1 + X_2 \ge 1$$
,

$$2X_1 + 3X_2 \ge 2$$

$$X_1, X_2 \ge 0.$$

- 29. Explain the different operations research models used today in the business world.
- 30. Solve using Simplex Method:

Maximize
$$Z=5x_1 + 3x_2$$

Subject to
$$x_1 + x_2 \le 2$$

$$5x_1 + 2x_2 \le 10$$

$$3x_1 + 8x_2 \le 12$$

$$x_1, x_2 \ge 0$$

31. Solve the following travelling salesman problem:

	A	В	C	D	Е
A		4	7	3	4
В	7		6	7	5
С	4	6		3	4
D	3	3	7		7
E	4	4	5	7	

32. Find the optimum solution of the following transportation problem using MODI method:

	P	Q	R	Supply
A	4	8	8	56
В	16	24	16	82
С	8	16	24	77
Demand	72	102	41	