(PAGES 2)

Reg.No.....

Name:

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2024

(Regular/Improvement/Supplementary)

MATHEMATICS

GMAT2B02T: CALCULUS AND INFINITE SERIES

Time: 2 ¹/₂ Hours

Maximum Marks: 80

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 25 Marks)

- 1. Find the inverse of the function $f(x) = \frac{2x-3}{5x-7}$ where the domain of f excludes $x = \frac{7}{8}$.
- 2. Solve $e^{2x+3} = 10$
- 3. Evaluate $\int e^{5x} dx$
- 4. Differentiate $y = 3^{(x+1)}$
- 5. Evaluate the expression $\log_3 \frac{1}{81}$.
- 6. Show that derivative of $\sinh x$ is $\cosh x$.
- 7. Express the number $coth^{-1}(\frac{5}{4})$ in terms of natural logarithms.
- 8. Evaluate $\lim_{x \to 0} \frac{e^x 1}{2x}$.
- 9. Write the first five terms of the sequence $a_n = \frac{n-1}{n^2+1}$.
- 10. State Squeeze Theorem for Sequences.
- 11. Discuss the convergence of geometric series.
- 12. Find the Maclaurin series of $f(x) = \cos x$.
- 13. Determine the radius of convergence of $\sum_{k=0}^{\infty} \frac{k^5}{(k+1)!} x^k$.
- 14. Show that the series $1 + \frac{1}{2} + \frac{1}{2^2} + \cdots$ converges and also find its sum.
- 15. What is an alternating series? Give an example.

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 35 Marks)

- 16. Find the area of the region between the graphs of $y = x^2 + 2$ and y = x 1 and the vertical lines x = -11 and x = 2.
- 17. Find the length of the graph of $f(x) = (x 1)^{\frac{3}{2}} + 2$ on [1, 2].
- 18. State and prove power rule.

- 19. Show that $\lim_{n \to \infty} (1+h)^{\frac{1}{h}} = e$
- 20. Evaluate $\int_2^4 \frac{1}{\sqrt{4-x}} dx$.
- 21. Prove that $\lim_{n \to \infty} |a_n| = 0$ then the sequence (a_n) converges to zero.
- 22. Justify the statement : Every conditionally convergent series need not be absolutely convergent.
- 23. Find the Taylor series for f(x) = In x at 1 and determine its interval of convergence.

SECTION C: Answer any two questions. Each carries ten marks.

- 24. A solid has a circular base of radius 2. Parallel cross sections of the solid perpendicular to its base are equilateral triangles. What is the volume of the solid?
- 25. a) Show that $\frac{d}{dx} \sinh^{-1} x = \frac{1}{\sqrt{x^2+1}}$
 - b) The concentration of a certain drug (in mg/cc) in a patient's bloodstream t hr after injection is $C(t) = \frac{t}{5(t^2+1)}$. Determine the average concentration of the drug in the patient's bloodstream over the first 4 hr after the drug is injected.
- 26. State and Prove ratio test for convergence of series.
- 27. a) State limit comparison test and hence show that the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$ divergent.
 - b) Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}2n}{4n-1}$ converges or not.

 $(2 \times 10 = 20 \text{ Marks})$