D2BHM2304	(PAGES 3)	Reg.No
		Name:

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2024

(Regular/Improvement/Supplementary)

HONOURS IN MATHEMATICS GMAH2B08T: DISTRIBUTION THEORY Time: 3 Hours Maximum Marks: 80 PART A: Answer all the questions. Each carries one mark. Choose the correct answer. 1. If X is a random variable, then $V(3X+1) = \dots$ b) 9V(X) + 1c) 3V(X) + 1d) 3V(X)a) 9V(X) 2. X and Y are two independent random variables, $V(3X + 4Y) = \dots$ a) 3V(X) + 4V(Y) b) 9V(X) + 16V(Y)c) V(X) + V(Y)d) zero 3. If X follows Binomial distribution B(8, 0.4), then the distribution of Y = 8 - X: a) B(8, 0.4)b) B(8, 0.6) c) B(4, 0.4)d) B(4, 0.6) 4. If X follows Uniform over [-1,1], then its mean =...... a) 0 b) 1 c) 1/3 d) 2 5. Seventh central moment of N(μ , σ) is: c) σ^7 d) μ^7 a) Zero b) One Fill in the Blanks. 6. If X is a random variable, then $V(6X) = \dots$ 7. If E(X) = 3 and $E(X^2) = 19$, then V(X) = ...8. In a Beta distribution of first kind, m=n =1, the distribution reduces to......

- 9. Name of the continuous distribution with lack of memory property is.......
- 10. If X is a standard normal variate, then $P(X \ge 3) = \dots$

 $(10 \times 1 = 10 \text{ Marks})$

PART B: Answer any eight questions. Each carries two marks.

11.

X :	-3	-2	-1	1	2
f(x):	0.1	0.2	0.4	0.2	0.1

Determine E(X).

12. For a certain distribution $\mu_r = r!$. Find an expression for the corresponding m.g.f and identify the distribution.

(PTO)

- 13. Define joint probability mass function and joint probability density function of a bivariate random variable.
- 14. If X and Y are two independent random variables. show that $M_{X+Y}(t) = M_X(t) M_Y(t)$.
- 15. For any two random variables X and Y, show that E(E(X|Y)) = E(X).
- 16. The mean and variance of Binomial variate X with parameters n and p are 16 and 8 respectively. Find P(X = 1) and P(X > 2).
- 17. If $X \rightarrow N(\mu, \sigma)$, Show that $\mu_{2r+2} = (2r+1)\sigma^2 \mu_{2r}$.
- 18. If X follows Normal with mean 35 and variance 4. Find.

(i)
$$P(X < 40)$$
.

(ii) P(
$$45 \le X \le 60$$
).

- 19. State Chebyshev's inequality.
- 20. State central limit theorem.

 $(8 \times 2 = 16 \text{ Marks})$

PART C: Answer any six questions. Each carries four marks.

- 21. Two dice are thrown. X represents the sum of the two numbers that come up. Determine E(X) and V(X).
- 22. Let X be a r.v with the following distribution:

X :	0	1	2	3	4	5	6
P (x) :	1/20	P ₁	1/5	P ₂	P ₃	1/10	1/10

If E(X) = 3.1, $E(X^2) = 12.1$. Find P_1 , P_2 and P_3 .

23. If
$$f(x,y) = \frac{1}{252}x^2(y+2)$$
; $x=1,2,3$ and $y=1,2,3,4$ is the joint p.m.f of (X,Y) .

Find the marginal p.d.f's.

24. Derive Moment generating function of Binomial distribution. Hence show that mean > variance.

25. If
$$X \to P(\lambda)$$
. Show that $\mu_{r+1} = \lambda \left[r \mu_{r-1} + \frac{d\mu_r}{d\lambda} \right]$

- 26. Show that exponential distribution does not possess additive property.
- 27. Find the least value of probability $P[1 \le X \le 7]$, where X is a r. v. with E(X) = 4 and V(X) = 4.
- 28. (X_k) , k = 1, 2, 3, ... is a sequence of independent random variables each taking the value -1, 0, 1. Given that $P(X_k = 1) = P(X_k = -1) = \frac{1}{k}$ and $P(X_k = 0) = 1 \frac{2}{k}$. Examine whether the law of large numbers holds for this sequence.

PART D: Answer any two questions. Each carries fifteen marks.

29. The joint p.d.f of X and Y is given by the following table.

Y	1	3	9
2	$\frac{1}{8}$	$\frac{1}{24}$	1 12
4	1/4	$\frac{1}{4}$	0
6	1/8	$\frac{1}{24}$	$\frac{1}{12}$

- (i) Find Cov (X, Y). (ii) Are X and Y independent?
- 30. (i) Prove that $\mu_{r+1} = pq \left[nr \, \mu_{r-1} + \frac{d\mu_r}{dp} \right]$, where μ_{r+1} , μ_{r-1} , μ_r are the central moments of Binomial distribution with parameters n and p. Hence obtain the first four central moments.
 - (ii) Derive MGF of Binomial distribution.
- 31. (i) If $X \to N(\mu, \sigma)$, Prove that $\mu_{2r} = 1.3.5...(2r 1)\sigma^{2r}$.
 - (ii) Using the above result obtain 2nd and 4th central moments. Hence find kurtosis.

 $(2 \times 15 = 30 \text{ Marks})$