D2BHM2303	(Pages: 2) Na	me:
		Reg	g. No:
SECOND SEME	STER B.Sc DEGRE	E EXAMINATIO	N, APRIL 2024
(Regular/Improveme	nt/Supplementary	·)
	HONOURS IN M	ATHEMATICS	
	GMAH2B07T: NU	MBER THEORY	
Time: 3 Hours		N	faximum Marks: 80
Part A. A	Answer All the quest	ions. Each carries	1 mark.
	Choose the cor	rect answer.	
1. For positive integer	rs a and b , then $gcd(a$	$(a,b) \ lcm(a,b) = \dots$	
a) 1 b) a	b c) 2ab	d) 0	
2. The value of k for	which $3 \equiv k \pmod{7}$	is _.	
a) 0 b)	4 c) 3	d) 7	
3. For integers a and	$b, a \equiv b \pmod{n}$ and	$\mathrm{d} \ \mathrm{if} \ gcd(a,n)=2, \ \mathrm{th} \ .$	$en \ gcd(b,n) = \dots$
a) 2 b)	4 c) 0	d)1	
4. The congruence a	$\equiv a \pmod{n}$ is true		
a) always b) o	nly when $a = 0$ c)	only when $a=1$	d) only when $a = i$
5. The only prime of	the form $n^2 - 4$ is	****	
a) 5 b)	7 c) 11	d)13	
.	2:11 : AL - Dl T2.		
	Fill in the Blanks. Ea		·•
	sitive divisors of 12 is $(A) =$		
7. For $n = 10$, $\sum_{d/10}$		1 6	1 11 #
	nce $3x \equiv 2 \; (mod \; 5)$ ha		solutions modulo 5.
	Iobius function, then μ	(b) is	
10. The sum of the div	usors of 6 is		
		(1	$0 \times 1 = 10 \mathrm{Marks})$
			(PTO)

Part B. Answer any 8 questions. Each carries 2 marks.

- 11. State Mobius inversion formula.
- 12. Find the binary representation of 105.
- 13. State and prove Euclid's lemma.
- 14. Define Mobius function and find $\mu(4)$.
- 15. If $a \equiv b \pmod{n}$ and if m/n then prove that $a \equiv b \pmod{m}$.
- 16. Define lcm of two nonzero integers a and b.
- 17. Define Pseudoprime and give an example.
- 18. State Fundamental theorem of Arithmetic.
- 19. State Fermat's theorem.
- 20. Find the prime factorization of the integer 1234.

 $(8 \times 2 = 16 \, \text{Marks})$

Part C. Answer any 6 questions. Each carries 4 marks.

- 21. If $ca \equiv cb \pmod{n}$ then show that $a \equiv b \pmod{n/d}$, where $d = \gcd(c, n)$.
- 22. Determine all positive integer solutions of the Diophantine equation 18x + 5y = 48.
- 23. Show that the Mobius function μ is a multiplicative function.
- 24. a) If $n=p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r}$ is the prime factorization of n>1, then show that $\tau(n)=(k_1+1)(k_2+1)\cdots(k_r+1)$.
 - b) Using the above formula, compute $\tau(28)$.
- 25. Prove that $\sqrt{2}$ is irrational.
- 26. State and prove Wilson's theorem.
- 27. Using Euclidean algorithm, find the qcd(272, 1479).
- 28. Show that there is an infinite number of primes of the form 4n+3.

 $(6 \times 4 = 24 \, \text{Marks})$

Part D. Answer any 2 questions. Each carries 15 marks.

- 29. a) Prove that there is an infinite number of primes.
 - b) Are the integers 1949 and 1951 twin primes? Justify.
- 30. State and prove Chinese remainder theorem.
- 31. a) State and prove division algorithm.
 - b) Show that $\frac{a(a^2+2)}{3}$ is an integer for all $a \ge 1$.

 $(2 \times 15 = 30 \, \text{Marks})$