(PAGES 2)

Reg.No	440
--------	-----

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2024

(Regular/Improvement/Supplementary)

HONOURS IN MATHEMATICS

	GMAH2B0	6T: CALCULUS II	
Time: 3 Hours			Maximum Marks: 80
PART A: Answer all the	e questions. Each car	ries <i>one</i> mark.	
Choose the correct answ	ær.		
1. The derivative of the	function lnax is		
A) $\frac{1}{ax}$	B) $\frac{1}{a}$	C) ax	$D)\frac{1}{x}$
2. The series, $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is			
A) convergent.	B) divergent.	C) alternating.	D) none of the these.
3. The radius of converg	ence of the power seri	$es \frac{1}{1-x} = 1 + x + x^2 +$	$x^3 = \cdots = \sum_{n=0}^{\infty} x^n $ is
A) 0	B)1	C) 2	D) ∞
4. The slope of the tange	ent line to the curve, x	= t, y = 2t is	
A) 0	B) 1	C) 2	D) t
5. If the equation $r = f($	(θ) is unchanged when	θ is replaced by $\pi + \theta$	θ , then the graph of $r = f(\theta)$ is
symmetric with respe	ct to		
A) x-axis.	B) y-axis.	C) polar axis.	D) none of these.
Fill in the Blanks.			
6. The Range of the fund	tion e ^x is		
7. The number $3.2\overline{14}$ rep	presented as a rational	number is	
8. The series $\sum_{n=1}^{\infty} a_n$ is.	, if $\lim_{n\to\infty}$	$\sqrt[n]{ a_n } = L > 1.$	
9. In polar coordinate sy	$/\text{stem}, (r, \theta + 2\pi) = 0$	(r,).	
10. The area of the surfac	e of revolution in pola	r coordinate system is	
TO A TRAFFI NO. A			(10 x 1 = 10 Marks)
PART B: Answer any e	gnt questions. Each	carties <i>two</i> marks.	
11 Windshaushaue Car C	(-\ l 74 + 0	$(1-)^{2}x - 10$	

11. Find the value of x, for (a) $\ln x = 7t + 9$ (b) $e^{2x} = 10$.

12. State Squeeze theorem and find the value of $\lim_{n\to\infty} \frac{n!}{n^n}$.

13. Define a monotone sequence and show that the sequence $\left\{\frac{n}{e^n}\right\}_{n=1}^{\infty}$ is decreasing.

14. Find the derivative $\frac{dy}{dx}$ for the function, $e^{2x} = Sin(x + 3y)$.

- 15. Define a series and list the first five terms of the sequence $\left\{\frac{n}{n+1}\right\}$.
- 16. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{2n-1}{3n+1}$.
- 17. Find the equation of the tangent line to the curve at the point corresponding to the value of the parameter, x = 2t 1 and $y = t^3 t^2$, t = 1.
- 18. Evaluate the following integral $\int \left(\frac{1+lnx}{2+xlnx}\right) dx$.
- 19. Find all the point of intersection of the given curves, r = 1 and $r = 1 + \cos \theta$.
- 20. Define the Horizontal and Vertical asymptote of a curve with illustrations.

 $(8 \times 2 = 16 \text{ Marks})$

PART C: Answer any six questions. Each carries four marks.

- 21. Evaluate the following limits: (a) $\lim_{y\to 0^+} y \ln y$. (b) $\lim_{u\to 0^+} u \cot u$. (c) $\lim_{z\to 0^+} \left(\frac{1}{\sin z} \frac{1}{z}\right)$.
- 22. Show that $\int_0^\infty e^{-tx} dx$, converges if t > 0 and diverges if $t \le 0$, where t is a constant.
- 23. State Root test of convergence and hence test the convergence of the series $\sum_{n=1}^{\infty} \frac{2^{n+3}}{(n+1)^n}$.
- 24. Show that the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ is conditionally convergent.
- 25. Find the area of the region that lies outside the circle r=3 and inside the cardioid, $r=2+2\cos\theta$.
- 26. Sketch the graph of the polar equation, $r = 1 + \cos \theta$.
- 27. Find the area of the surface obtained by revolving the curve $x = e^t t$, $y = 4e^{t/2}$, $0 \le t \le 1$ about y-axis.
- 28. Find the second derivative $\frac{d^2y}{dx^2}$, for the function $x = t^2 4$, $y = t^3 3t$.

 $(6 \times 4 = 24 \text{ Marks})$

PART D: Answer any two questions. Each carries fifteen marks.

- 29.(a) Show that the function $y = 2e^{-x/2} + 5e^{3x/2}$ is a solution of the differential equation, $4y^{||} 4y^{||} 3y = 0$.
 - (b) Find the absolute extrema of the function $f(x) = e^{2x} e^{x}$ on [-2,0].
- 30. State and prove integral test for convergence and hence determine whether $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ converges or diverges.
- 31. (a) Find the Taylor series expansion of the function $f(x) = \ln x$ at a = 1 and hence find its interval and radius of convergence.
 - (b) Find the Maclaurin series for the function $f(x) = (1 + x)^k$, where k is a real number and hence find its radius of convergence.

 $(2 \times 15 = 30 \text{ Marks})$