D2BEM	[2302
-------	--------------

(PAGES 2)

Reg.No

Name:

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2024

(Regular/Improvement/Supplementary)

ECONOMICS & MATHEMATICS (DOUBLE MAIN)

GDMT2B02T: ADVANCED CALCULUS

Time: 2 1/2 Hours

Maximum Marks: 80

SECTION A: Answer the following questions. Each carries two marks.

(Ceiling 25 Marks)

- 1. Evaluate $\int_{1}^{\infty} e^{-x} dx$.
- 2. Give examples of (a) convergent sequence (b) divergent sequence.
- 3. What is absolutely convergent series? Give an example.
- 4. State the root test.
- 5. Find the radius of convergence of $\sum_{n=0}^{\infty} n! x^n$.
- 6. Obtain the Maclaurin's series expansion of $f(x) = \cos x$.
- 7. Describe the curve represented by $x = 4\cos\theta$, $y = 3\sin\theta$, $0 \le \theta \le 2\pi$.
- 8. Show that the surface area of a sphere of radius r is $4\pi r^2$.
- 9. The point $(2, \frac{\pi}{2})$ is given in polar coordinates. Find its representation in rectangular coordinates.
- 10. Sketch the graph of the polar equation $\theta = -\frac{\pi}{4}$.
- 11. Find the parametric equation for the line passing through P(1, -4, 2) that is parallel to the vector $\bar{v} = 2\hat{i} 3\hat{j} + \hat{k}$.
- 12. Find the distance between the point (3,1,2) and the plane 2x 3y + 4z = 7.
- 13. Write an equation in spherical coordinates for the paraboloid with rectangular equation $4z = x^2 + y^2$.
- 14. For the curve $r(t) = t\hat{i} + 2t\hat{j} + 3t\hat{k}$, $0 \le t \le 4$ find the length of the curve.
- 15. Obtain unit tangent vector T(t) for the curve $t^2\hat{i} + t^3\hat{j}$ at t = 1.

SECTION B: Answer the following questions. Each carries five marks.

(Ceiling 35 Marks)

- 16. Show that $\lim_{n\to\infty} r^n = 0$ if |r| < 1.
- 17. State divergence test. Using divergence test show that $\sum_{n=1}^{\infty} \frac{n^2}{2n^2+1}$ is divergent.
- 18. Use integral test to determine whether $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ converges or diverges.
- 19. Find a power series representation for $tan^{-1} x$ by integrating a power series representation of $f(x) = \frac{1}{1+x^2}$.
- 20. Find the area of the surface obtained by revolving the circle $r = \cos \theta$ about the line $\theta = \frac{\pi}{2}$.
- 21. Obtain an equation of the plane containing the points P(3, -1, 1), Q(1, 4, 2) and R(0, 1, 4).
- 22. Sketch the graph of $\frac{y^2}{4} + \frac{z^2}{9} = 1$.
- 23. Find the velocity, acceleration and speed of an object with the position vector $\mathbf{r}(t) = e^{t}\hat{\mathbf{i}} + e^{-t}\hat{\mathbf{j}} + t^{2}\hat{\mathbf{k}}$.

SECTION C: Answer any two questions. Each carries ten marks.

24. Check the convergence of the following series.

(a)
$$\sum_{n=1}^{\infty} \frac{2n^2+n}{\sqrt{4n^2+3}}$$
 (b) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}-1}$

25.

- (a) State and prove alternating series test.
- (b) Prove that the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ is convergent.

26.

- (a) Find the length of the cardioid $r = 1 + \cos \theta$.
- (b) Find an equation of the tangent line to the curve $x = \theta \cos \theta$, $y = \theta \sin \theta$ at the point where $\theta = \frac{\pi}{2}$.

27.

- (a) Find the curvature of the smooth curve described by the vector function $r(t) = t \hat{\imath} + \frac{1}{2}t^2\hat{\jmath} + \frac{1}{3}t^3\hat{k}$.
- (b) Find scalar tangential and normal components of acceleration of a particle with position vector $\mathbf{r}(t) = 2\sin t \,\hat{\imath} + 2\cos t \,\hat{\jmath} + t \,\hat{k}$.

 $(2 \times 10 = 20 \text{ Marks})$