Reg.No..... Name:

SECOND SEMESTER B.Sc DEGREE EXAMINATION, APRIL 2023

(Regular/Improvement/Supplementary)

MATHEMATICS: COMPLEMENTARY COURSE FOR PHYSICS, CHEMISTRY & CS **GMAT2C02T: MATHEMATICS -2**

Time: 2 Hours

Maximum Marks: 60

SECTION A: Answer the following questions. Each carries two marks. (Ceiling 20 Marks)

- 1. Use the definition of $\sinh x$ and $\cosh x$ to show that $\cosh^2 x \sinh^2 x = 1$
- 2. Find the polar equation of the circle $x^2 + (y-3)^2 = 9$
- 3. Find the Cartesian equation of the polar equation of $r = \frac{4}{2\cos\theta \sin\theta}$
- 4. Find the directrix of the parabola $r = \frac{25}{(10+10\cos\theta)}$
- 5. Sketch the graph of the curve $r = 4 \cos \theta$
- 6. If $z_1 = 4 + 3i$, $z_2 = 2 5i$ then find $z_1 z_2$ and $\frac{z_2}{z_1}$
- 7. Find the value of Re f and Im f of $f = \frac{z-2}{z+2}$
- 8. Check for analyticity using Cauchy Riemann equations for $f(z) = e^{x}(\cos y + i\sin y)$
- 9. Evaluate $\int_{-i}^{i} \frac{dz}{z}$
- 10. Evaluate $\oint_C \frac{dz}{z^2+1}$, where C is |z+i|=1
- 11. State Liouville's and Morera's theorem
- 12. Find the first order partial derivatives of $f(x, y) = e^{xy} \sin(xy)$

SECTION B: Answer the following questions. Each carries five marks. (Ceiling 30 Marks)

- 13. Find all polar coordinates of the point $P\left(2,\frac{\pi}{6}\right)$.
- 14. Graph the curve $r^2 = 4\cos\theta$.
- 15. Determine whether the function $u = x^2 y^2 y$ is harmonic or not. If harmonic find a conjugate harmonic function v of u.
- 16. Integrate $\frac{e^{-z_{sinz}}}{z^2}$ counterclockwise around the unit circle.
- 17. Evaluate $\oint_C \frac{z^3-6}{2z-i} dz$ around the circle C: |z| = 2.
- 18. Find $\frac{dw}{dt}$ at the point t = 0 if w = xy + z, x = cost, y = sint, $z = 6t^2$.
- 19. Show that the function $f(x, y) = \frac{2x^2y}{x^4+y^2}$ has no limit as (x, y) approaches (0,0).

SECTION C: Answer any one question. Each carries ten marks.

20. Evaluate
$$\int_C \frac{z^4 - 3z^2 + 6}{(z+i)^3} dz$$
, where C is the curve a) $|z| = 2$

a)
$$|z| = 2$$

b)
$$|z - 4i| = 1$$
.

21. a) Find the area enclosed by the cardioid $r = 2(1 + \cos \theta)$

b) Find
$$\frac{\partial w}{\partial u}$$
 and $\frac{\partial w}{\partial v}$ if $w = x^2 + y^2 + z^2$, $x = e^v u sinu$, $y = u e^v cosu$, $z = u e^v$