| TA 3 | D | m | II | 3 | 3 | n | 3 |
|------|---|---|----|---|---|---|---|
| D2   | D | r |    | 4 | 4 | U | 4 |

(PAGES 2)

| Reg. | No |
|------|----|
|      |    |

Name: .....

#### SECOND SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023

(Regular/Improvement/Supplementary)

## PHYSICS: COMPLEMENTARY COURSE FOR CHEMISTRY & MATHEMATICS GPHY2C02T: OPTICS, LASER AND ELECTRONICS

Time: 2 Hours Maximum Marks: 60

# SECTION A: Answer the following questions. Each carries two marks. (Ceiling 20 Marks)

- 1. Is it possible to observe interference fringes with light emanating from two independent sources? Why?
- 2. What is meant by constructive interference?
- 3. What is the condition for obtaining a minimum for Fraunhofer single slit diffraction?
- 4. Coin out an example for diffraction from daily life.
- 5. What is grating? Explain grating constant.
- 6. Write down the condition for getting second order maximum in a grating.
- 7. Distinguish between polarised light and unpolarised light.
- 8. What is a truth table of logic gates?
- 9. State Barkhausen condition for sustained oscillations.
- 10. How the output frequency differs in the case of full wave and half wave rectifier?
- 11. List the properties of Laser beam.
- 12. How do we make population inversion in ruby laser?

### SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 30 Marks)

- 13. Two coherent sources are 0.18 mm apart and the fringes are observed on a screen 80 cm away. It is found that with a certain monochromatic source of light, the fourth bright fringe is situated at a distance of 10.8 mm from the central fringe. Calculate the wavelength of light.
- 14. Find the half angular width of the central bright maximum in the Fraunhoffer diffraction pattern of a slit of width 12 X 10<sup>-5</sup> cm when the slit is illuminated by monochromatic light of wavelength 6000Å.

- 15. What is the longest wave length that can be observed in third order spectrum with a grating having 6000 lines/cm. Assume normal incidence.
- 16. Derive the equation for minimum thickness of quarter wave plate for light of wavelength  $\lambda$ .
- 17. Specific rotation of sugar solution is 65°. If the glass tube of the saccharimeter having length 20 cm contains sugar solution of concentration 0.1 gcm<sup>-3</sup>, through what angle the plane of polarization turned.
- 18. A full wave rectifier uses two identical diodes of resistance 10 Ω. The transformer provides an r.m.s. secondary voltage of 12 V between centre tap and one end. If the load resistance of rectifier is 1 KΩ calculate a) maximum ac voltage.
  b) maximum load current.
  c) dc output voltage.
  d) peak inverse voltage of diode.
- 19. The bigger the energy difference between two states, the much more likely is spontaneous emission compared to stimulated emission. Why?

#### SECTION C: Answer any one question. Each carries ten marks.

- 20. Describe with necessary theory how the wavelength of a monochromatic source of radiation can be determined using Newton's ring arrangement.
- 21. What is the basic principle of an amplifier? Describe with neat diagram how a transistor amplifier with CE configuration works.

 $(1 \times 10 = 10 \text{ Marks})$