Reg.No	
Name:	

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023

(Regular/Improvement/Supplementary)

MATHEMATICS

GMAT2B02T: CALCULUS AND INFINITE SERIES

Time: 2 1/2 Hours

Maximum Marks: 80

SECTION A: Answer the following questions. Each carries two marks.

(Ceiling 25 Marks)

- 1. Express the volume of the solid obtained by revolving the region under the graph of $y = \sqrt{x}$ on [0,2] about the x axis as an integral.
- 2. Write the integral that gives the arc length of (1) a smooth function y = f(x) on the interval [a, b](2) a smooth function x = g(y) on the interval [c, d].
- 3. Define a solid of revolution. Write the integral that gives the volume of a solid of revolution using the disk method where the axis of revolution is x axis.
- 4. Prove that $\ln\left(\frac{x}{y}\right) = \ln x \ln y$.
- 5. Find $\int x \sec x^2 dx$.
- 6. Solve the equation $2e^{x+2}=5$.
- 7. Evaluate $\int_0^1 3^x dx$.
- 8. Find $\cot\left(\sin^{-1}\frac{1}{3}\right)$.
- 9. Define a divergent sequence. Give an example.
- 10. Find $\lim_{n\to\infty} e^{\sin(1/n)}$.
- 11. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is divergent or not.
- 12. State the Limit Comparison Test
- 13. Find the radius of convergence and interval of convergence of $\sum_{n=0}^{\infty} n! x^n$.
- 14. Determine whether the series $\sum_{n=1}^{\infty} (-1)^n \frac{2n}{4n-1}$ converges or diverges.
- 15. Define a power series in x.

SECTION B: Answer the following questions. Each carries five marks

(Ceiling 35 Marks)

- 16. Find the area of the region between the graphs of $y = x^2 + 2$ and y = x 1 and the vertical lines x = -1 and x = 2.
- 17. Find the arc length of the graph of the equation $y = 2(x-1)^{3/2}$ from P(1,0) to Q(5,16).
- 18. Evaluate $\int \frac{1}{x\sqrt{x^4-16}} dx$.
- 19. Find the derivative of $y = \frac{(2x-1)^3}{\sqrt{3x+1}}$.
- 20. State Squeeze theorem for Sequences. Applying Squeeze theorem, show that $\lim_{n\to\infty}\frac{n!}{n^n}=0$.

- 21. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{3+2^n}$ converges or diverges.
- 22. Determine whether the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^2+1}{2^n}$ is absolutely convergent, conditionally convergent or divergent.
- 23. Find the Taylor series representation of $f(x) = \frac{1}{1+x}$ at x = 2.

SECTION C: Answer any two questions. Each carries ten marks.

- 24. (a) Find the area of the surface obtained by revolving the graph of $x = y^{3}$ on the interval [0,1] about the y axis.
 - (b) A solid has a circular base of radius 2. Parallel cross sections of the solid perpendicular to its base are equilateral triangles. What is the volume of the solid?
- 25. (a) Evaluate $\lim_{x\to 0^+} \left(\frac{1}{x}\right)^{\sin x}$
 - (b) Find the derivative of $f(x) = x^x$.
- 26. (a) Determine whether the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$ is convergent or divergent.
 - (b) Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n+\ln n}}{n^2+1}$ converges or diverges.
- 27. (a) Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \cdot 3.5.7 \dots (2n+1)}{1.4.7 \dots (3n-2)}$ is convergent, absolutely convergent, conditionally convergent or divergent.
 - (b) Find the Maclaurin series of $f(x) = e^x$ and determine its radius of convergence.

 $(2 \times 10 = 20 \text{ Marks})$