(PAGES 2)

Reg.No.....

Name:

SECOND SEMESTER UG DEGREE EXAMINATION, APRIL 2023

(Regular/Improvement/Supplementary)

BCA

GBCA2C04T: OPERATIONS RESEARCH

Time: 2 Hours

Maximum Marks: 60

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 20 Marks)

- 1. What is analogue model? Give an example.
- 2. Write the primal form of the following LPP

$$Max : Z = 3x_1 + x_2 + 2x_3$$

$$s.t \quad x_1 + x_2 + x_3 \le 5$$

$$2x_1 + x_3 \ge 10$$

$$x_2 + 3x_3 \le 15$$

$$x_1, x_2, x_3 \ge 0$$

- 3. What are transportation problems?
- 4. Give any two advantages of a model.
- 5. Write a short note on Least Cost entry method.
- 6. Find the initial feasible solution to the following Transportation problem using North West corner rule.

10)	
I	II	Supply
2	7	5
5	5	7
1	6	13
15	10	Year Sale
	I 2 5 1	2 7 5 5 1 6

- 7. How will you solve maximization problem using assignment techniques?
- 8. Give any two differences between transportation problem and assignment problem.
- 9. Give any two network techniques.
- 10. How do we represent activities and events on a network diagram?
- 11. Define Latest Start Time.
- 12. Give the formula to find the expected time for each activity.

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 30 Marks)

- 13. Write a short note on various techniques of O.R
- 14. "O.R is the art of finding bad answers where worse exists". Comment.
- 15. Write the dual of $Max : Z = 3x_1 + x_2 + 2x_3$

s.t
$$x_1 + x_2 + x_3 \le 5$$

 $2x_1 + 4x_3 = 10$
 $x_2 + 3x_3 \le 15$
 $x_1, x_2, x_3 \ge 0$

Joh

		I = I	II	III	IV
Workers	A	12	30	21	15
	В	18	33	9	31
	C	44	25	21	21
	D	14	30	28	14

17. Solve the following assignment problem

	1	II	III	IV	V
A	10	12	16	11	12
В	13	10		11	10
C		12	15	12	8
D	15	9	13	8	9

18. For the set of data given below, determine the sequence that minimizes the total elapsed time for the five jobs.

Job :	1	2	3	4	5
Time on machine A :	5	1	9	3	10
Time on machine B:	2	6	7	8	Δ

19. The following table gives the activities in a construction project and other relevant information.

Activity (i - j)	1-2	1-3	1-4	2-5	3-5	3-6	4-6	5-6
Time duration	16	13	12	18	15	10	1/	15

- 1) Construct network diagram.
- 2) Find Total float for each activity.
- 3) Which are the critical activities?

SECTION C: Answer any one question. Each carries ten marks.

20. Solve the following problem using simplex method.

Max:
$$Z = 6x_1 + 4x_2$$

Subject to $-2x_1 + x_2 \le 2$
 $x_1 - x_2 \le 2$
 $3x_1 + 2x_2 \le 9$
 $x_1, x_2 \ge 0$

21. Solve the following problem to maximize the profit.

		То		
From	I	II	III	Supply
A	2	7	14	5
В	25	23	10	8
C	5	15	7	7
D	1	16	12	14
Demand	7	9	18	