37 (A) (PAGES 2)

Reg.	No
Nam	e:

SECOND SEMESTER UG DEGREE EXAMINATION, APRIL 2023 (Supplementary- 2018 Admission)

BCA

CBCA2C04T: OPERATIONS RESEARCH

Time: 3 Hours Maximum Marks: 80

PART A: Answer all the questions. Each carries one mark.

- 1. What is an artificial variable?
- 2. Comment on feasible region.
- 3. Define total float.
- 4. What is unbalanced transportation problem?
- 5. Define Optimal Solution.
- 6. What do you mean by assignment problem?
- 7. Define sequencing problem.
- 8. Which method is used for solving Assignment Problem?
- 9. What is predecessor activity?
- 10. Write the advantages of Graphical Method.

(10 x 1=10 Marks)

PART B: Answer all the questions. Each carries two marks.

- 11. Explain Travelling salesman problem.
- 12. How to construct a simplex table?
- 13. State the rules for drawing network diagram.
- 14. Write any two applications of Network technique.
- 15. Explain the features of Operations Research.
- 16. What is an objective function?
- 17. Define LFT.
- 18. Explain the process of n jobs through 3 machines.

 $(8 \times 2 = 16 \text{ Marks})$

PART C: Answer any six questions. Each carries four marks.

- 19. What is the row reduction method in assignment problem?
- 20. Explain the procedure of assignment problem.
- 21. Formulate the dual of the LPP:

Maximize $Z=x_1-2x_2+3x_3$

Subject to $2x_1+x_2+3x_3=2$

 $2x_1+3x_2+4x_3=1$

 $x_1, x_2, x_3 \ge 0$

- 22. Explain the procedure of two phase method.
- 23. Define transportation problem. Give its mathematical formulation.
- 24. Describe the procedure for solving two jobs through machine
- 25. Define Operation research and explain its limitation.
- 26. Write the uses of Linear Programming Problem.
- 27. Discuss the steps involved in VAM and MODI method.

 $(6 \times 4 = 24 \text{ Marks})$

PART D: Answer any three questions. Each carries ten marks.

28. Solve the linear programming problem using Two phase method

Max
$$Z = 3x_1 - x_2$$

Subject to
$$2x_1 + x_2 \le 2$$
; $x_1 + 3x_2 \ge 3$; $x_2 \le 4$; $x_1, x_2 \ge 0$

29. Solve the following minimal assignment problem:

15	13	14	17
11	12	15	13
13	12	, 10	11
15	17	14	16

30. Construct the network diagram and identify the critical path and find the minimum time of completion of the project when time is in days of each task is as follows:

Activity	1 -2	1-3	1-4	2 - 4	2 - 6	3 - 5	3-6	4-5	5 - 6
Duration	8	8	10	10	16	18	14	17	9

- 31. What are the phases of Operations Research and explain the areas where operations research is used?
- 32. Find the initial basic feasible solution of the given transportation problem using NWCM:

	$\mathbf{D_1}$	$\mathbf{D_2}$	D_3	\mathbf{D}_4	Supply
O ₁	1	2	1	4	30
O ₂	3	3	2	1	50
O ₃	4	2	5	9	20
Demand	20	40	30	10	