D	D	LIN	112	204	1
UZ	D			411	b .

(PAGES 3)

10 5.1 10	Reg.No	
-------------------------	--------	--

Name:	••••••

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023 HONOURS IN MATHEMATICS

•	GMAH2B08T: DIST	TRIBUTION THEORY	
Time: 3 Hours			Maximum Marks: 80
PART A: Answer all the q	uestions. Each carri	es <i>one</i> mark.	
Choose the correct answer	•		
1. If $E(X) = 5$ and $V(X) = 1$	2, then $E(X^2) =$		*
(a) 7	(b) 17	(c) 37	(d) 60
2. If $E(X) = 3$, then $E(4X-6)$) =		
(a) 12	(b) 6	(c) 18	(d) 13
3. X and Y are two indepen	dent random variable	$f(x y) = \dots$	
(a) $f_1(x)$	(b) f ₂ (y)	(c) Zero	(d) f(x,y)
4. The mean and variance o	f an exponential distr	ibution when $\theta > 1$ is	
(a) Mean = variance		(b) Mean > variance	
(c) Mean < variance	£.h	(d) Does not exists	
5. The MGF of a Cauchy di	stribution	****	
(a) Does not Exist.	(b) Exists if $t <$	1 (c) Exists if $t >$	(d) Exists.
Fill in the Blanks.			
6. If X is a random variable	, then $V(2X - 2) =$		
7. If $f(x,y)$ is the pmf of a big	ivariate random varia	ble, then $\sum_{x} f(x, y) = \dots$	
8. X and Y are two independent	dent random variable	s, $Cov(X, Y) =$	
9. For a Binomial distribution	on with parameters (7	, 0.5), its mode =	
10. If X follows Uniform over	er [a,b], then its varian	nce =	
			$(10 \times 1 = 10 \text{ Marks})$
DADTR. Answer ony eigh	t questions Fach as	rriae twa marke	,

11. Evaluate E(2^x) for the following p.m.f $f(x) = \frac{1}{2^x}$, x = 1, 2, 3, ...

Write your comments about the expected value.

- 12. Show that E(aX + b) = a E(X) + b; where a and b are constants.
- 13. If X and Y are two independent random variables, show that $V(aX + bY) = a^2 V(X) + b^2 V(Y)$.
- 14. For any two random variables X and Y show that $(E(XY))^2 \le E(X^2)E(Y^2)$.

- 15. If the moment generating function of a Binomial distribution is $M_X(t) = \left(\frac{1}{3}\right)^5 \left(2 + e^t\right)^5$, obtain the mean and variance of a distribution.
- 16. State the inter relation among Exponential and Gamma distribution.
- 17. If $Z \to N(0,1)$ find P(-2 < Z < 1.5).
- 18. If X follows normal with mean 30 and SD 5. find.
 - (i) $P[26 \le X \le 40]$
- (ii) $P[X \ge 45]$.
- 19. State the Weak law of large numbers.
- 20. Define convergence in distribution.

 $(8 \times 2 = 16 \text{ Marks})$

PART C: Answer any six questions. Each carries four marks.

- 21. If X is ar.v having the p.d.f $f(x) = \frac{x+1}{2}$, $-1 \le x < 1$, find E(X) and V(X)
- 22. Define moment generating function. Given f(x) = C x, 0 < x < 2. Determine C and M $_X(t)$.
- 23. The joint p.d.f of (X, Y) is given in the table.
 - (i) Find the marginal distributions.
 - (ii) Examine whether X and Y are independent.

Y	0	1	2
-1	$\frac{1}{15}$	$\frac{3}{15}$	$\frac{2}{15}$
0	$\frac{2}{15}$	$\frac{2}{15}$	$\frac{1}{15}$
1	$\frac{1}{15}$	$\frac{1}{15}$	$\frac{2}{15}$

- 24. Let X be a discrete random variable having the pdf $f(x) = 2^{-x}$; x = 1, 2, 3, ... Obtain its mgf. Hence find mean of the distribution.
- 25. If X and Y are independent Poisson random variables, find the conditional distribution of X given X + Y.
- 26. Obtain the m.g.f. of an exponential distribution and hence find its mean and variance.
- 27. Examine whether WLLN holds for the sequence X_n of independent random variables.

$$P(X_n = \frac{1}{\sqrt{n}}) = \frac{2}{3}$$
, $P(X_n = \frac{-1}{\sqrt{n}}) = \frac{1}{3}$

28. Let X_i assumes the values i^{α} and $-i^{\alpha}$ with equal probability. Check whether the law of large numbers hold to the independent variables X_1 , X_2 , ... for $\alpha < \frac{1}{2}$.

PART D: Answer any two questions. Each carries fifteen marks.

29. If
$$f(x,y) = \begin{cases} k(x+y+xy), 0 < x < 1, 0 < y < 1 \\ 0, otherwise \end{cases}$$

Determine

- (i) The constant k
- (ii) The marginal densities of X and Y
- (iii) The conditional density of X and Y.
- 30. (i) Prove that $\mu_{r+1} = \lambda \left[r \, \mu_{r-1} + \frac{d\mu_r}{d\lambda} \right]$, where μ_{r+1} , μ_{r-1} , μ_r are the central moments of

Poisson distribution with parameter λ . Hence obtain the first four central moments.

- (ii) Derive MGF of Poisson distribution.
- 31. (i) Define Normal distribution. What are the important properties of Normal distribution?
 - (ii) If X is normally distributed with mean 11 and SD 1.5. Find the number k such that

1

- (a) P(X > k) = 0.3 and
- (b) P(X < k) = 0.09

 $(2 \times 15 = 30 \text{ Marks})$