Reg.N	0	

Name:

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023 HONOURS IN MATHEMATICS

GMAH2B07T: NUMBER THEORY

Time: 3 Hours **Maximum Marks: 80**

PART A: Answer all the questions. Each carries one mark.

Choose the correct answer.

1.	Which one of the	following	is true for	size estimate	for p_n (nth	prime number)).
----	------------------	-----------	-------------	---------------	----------------	---------------	----

a) $p_n \le p_1 \dots p_{n-1} - 1$

b) $p_n \ge p_1 \dots p_{n-1} - 1$

c) $p_n = p_1 \dots p_{n-1} - 1$

- d) $p_n \neq p_1 \dots p_{n-1} 1$
- 2. In how many ways can the even integer 78 be represented as the sum of odd primes.
 - a) 6 b) 7 c) 8

- 3. An example of prime triplets (p, p + 2, p + 6) is.....
 - a) 41, 43, 46
- b) 10, 29, 49
- c) 81, 83, 87
- d) 47, 49, 59

- 4. Identify the incongruence equation.
 - a) $38 \equiv 6 \pmod{4}$
- b) $4 \equiv 2 \pmod{4}$ c) $40 \equiv 1 \pmod{13}$ d) $6 \equiv 6 \pmod{7}$

- 5. Identify the congruence modulo n equation.
 - a) $40 \equiv 2 \pmod{13}$
- b) $4 \equiv 2 \pmod{4}$
- c) $41 \equiv 1 \pmod{13}$ d) $59 \equiv 10 \pmod{7}$

Fill in the Blanks.

- 6. The gcd(128,125,120) is
- 7. Find x for the equation $59 \equiv x \pmod{7}$.
- 8. Solve for x, $25 \equiv x \pmod{16}$
- 9. The sum of the divisors of 450 is
- 10. The τ and σ functions of 12 is

 $(10 \times 1 = 10 \text{ Marks})$

PART B: Answer any eight questions. Each carries two marks.

- 11. Justify the statement: The cube of any integer has one of the forms: 9k, 9k + 1, 9K + 8.
- 12. Assuming that gcd(a,b) = 1, Prove that gcd(a-b,a+b) = 1 or 2.
- 13. Define e-prime numbers with an example.
- 14. State Bonse's inequality.
- 15. Prove that if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ then $a \equiv c \pmod{n}$.

- 16. State the divisibility test of 11 and hence check whether 149235678 is divisible by 11.
- 17. State and prove the converse of Wilson's theorem.
- 18. Define μ function with an example.
- 19. If f is a nonzero multiplicative function the f(1) = 1.
- 20. Find the number and sum of divisors of 180.

 $(8 \times 2 = 16 \text{ Marks})$

PART C: Answer any six questions. Each carries four marks.

- 21. Prove that the expression $\frac{a(a^2+2)}{3}$ is an integer for all $a \ge 1$.
- 22. Find lcm(3054, 12378).
- 23. Using Sieve of Eratosthenes find all primes between 40 and 240.
- 24. Show that for a positive integer N, 9/N if and only if 9/S where $N = a_m 10^m + a_{m-1} 10^{m-1} + \cdots a_1 10 + a_0$; $0 \le a_k < 10$ and $S = a_0 + a_1 + \cdots a_m$.
- 25. Show that $n^7 n$ is divisible by 42.
- 26. Verify whether 10585 is an Absolute Pseudoprime.
- 27. Prove that the product of the positive divisors of an integer n > 1 is equal to $n^{\frac{\tau(n)}{2}}$
- 28. For n = 434 verify that $\sigma(n+2) = \sigma(n) + 2$. Also, what can you conclude from n and n+2?

 $(6 \times 4 = 24 \text{ Marks})$

PART D: Answer any two questions. Each carries fifteen marks.

- 29. Using Euclidean algorithm find the gcd(858,325) and also represent the gcd as a linear combination of 858 and 325.
- 30. Prove the following:
 - (a) The product of two or more integers of the form 4n+1 is of the same form.
 - (b) There are infinite number of primes of the form 4n+3.
- 31. Prove that the linear congruence $ax \equiv b \pmod{n}$ has a solution if and only if d/b where d = gcd(a, n). If d/b then it has d mutually incongruent solutions modulo n. Hence prove that if gcd(a, n) = 1 then the linear congruence has a unique solution modulo n.

 $(2 \times 15 = 30 \text{ Marks})$