(PAGES 2)

Reg.	No
* T	

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023 (Supplementary – 2018 Admission)

STATISTICS: COMPLEMENTARY COURSE FOR MATHEMATICS & CS ASTA2C02T: PROBABILITY DISTRIBUTIONS

Time: 3 Hours	Maximum Marks: 80
PART A: Answer all the questions. Each carries 1 mark.	
1 Define V(eV) unhance has a constant and readon contable V	

- 1. Define V(aX), where a be a constant and random variable X.
- 2. First central moment of X is...
- 3. If the fourth central moment of a random variable Y is 10, what can you say about the kurtosis of Y?
- 4. If two random variables X and Y are independent, then their joint PDF is......
- 5. If the correlation coefficient between two random variables is zero, can we conclude that they are independent?
- 6. What is the expectation of a bivariate random variable?
- 7. Provide an example of a discrete distribution that demonstrates the lack of memory property.
- 8. How can the Cauchy distribution be derived from the standard normal distribution?
- 9. Calculate the mean, variance, and moment generating function (MGF) of a Binomial distribution with parameters n = 10 and p = 0.3.
- 10. In the Central Limit Theorem (Lindberg-Lévy version) for independent and identically distributed variables, as the sample size increases, the distribution of the standardized sample mean approaches a ______ distribution.
- 11. The weak law of large numbers guarantees that the sample mean approaches the population mean as the sample size goes to _____.
- 12. According to Chebyshev's inequality, for any random variable, the probability that it deviates from the mean by more than ______ standard deviations is at most _____.

 $(12 \times 1=12 \text{ marks})$

PART B: Answer all the questions. Each carries 2 marks.

- 13. Define mathematical expectation in univariate analysis.
- 14. Define the characteristic function and explain its utility.
- 15. How is conditional probability defined for a bivariate random variable?
- 16. Define a bivariate random variable.
- 17. Describe the process of deriving the Lognormal distribution from the normal distribution.
- 18. What is the probability mass function (PMF) of the Bernoulli distribution?
- 19. Provide an overview of the properties associated with the normal distribution.
- 20. Derive mean and variance for continuous uniform distribution over zero and one.
- 21. Let $X \sim B(n, p)$ then derive the distribution of n X.

 $(9 \times 2 = 18 \text{ Marks})$

(PTO)

PART C: Answer any 5 questions. Each carries 6 marks.

- 22. Consider a continuous random variable Y with PDF f(y) = 2y, where $y \in [0, 1]$. Find the first four raw moments.
- 23. Consider a bivariate random variable (X, Y) with the joint PDF given by f(x, y) = 4xy, where $x \in [0, 1]$ and $y \in [0, 2]$. Determine whether X and Y are independent.
- 24. Derive MGF of Normal distribution.
- 25. State and prove lack of memory for continue case.
- 26. Derive row moments of Lognormal distirbution.
- 27. Derive binomial distribution from Poisson distribution.
- 28. Let's consider a random variable X with a mean of 50 and a standard deviation of 10. Use Chebyshev's inequality to find the minimum proportion of values within 3 standard deviations from the mean.

 $(5 \times 6 = 30 \text{ Marks})$

PART D: Answer any 2 question. Each carries 10 marks.

- 29. Given the moment-generating function $M(t) = 1 + 2e^{t}$, find the skewness of the random variable.
- 30. Consider a dataset consisting of the heights (in inches) and weights (in pounds) of a group of individuals. The dataset is as follows: Height (X): [65, 68, 70, 63, 67, 72, 69, 66, 64, 71] Weight (Y): [150, 155, 160, 145, 158, 165, 156, 148, 143, 162] Calculate the correlation coefficient between height and weight for this group of individuals.
- 31. Derive beta first kind distribution from two independent gamma distributions.
- 32. State and prove Chebyshevs inequality

 $(2 \times 10 = 20 \text{ Marks})$