D2BMT1802(S4)

(PAGES 2)

Reg. No:

Name:

SECOND SEMESTER B. Sc DEGREE EXAMINATION, APRIL 2023

(Supplementary-2018 Admission)

MATHEMATICS: Complementary Course for Physics, Chemistry and C.S. AMAT2C02T - MATHEMATICS

Time: 3 Hours

Maximum Marks: 80

PART A: Answer all questions. Each carries ONE mark.

- 1. $\sinh 2x = \dots$
- 2. What is the derivative of $x^2 \cosh x$.
- 3. Is $\sinh x$ periodic function. Justify your answer.
- 4. Find $\int \sinh \frac{x}{3} dx$.
- 5. Find the real part and imaginary part of sin z.
- 6. Define analytic function.
- 7. Define interior point in a complex plane.
- 8. Find $\lim_{z\to 2+i} z^3 + 2z + 1$.
- 9. State Cauchy-Riemann Equations.
- 10. What is the domain of $f(x,y) = \frac{2x}{x^2 y^2}$.
- 11. Give an example of an unbounded subset of \mathbb{R}^2 .
- 12. Find the partial derivative of $x^2 + 2xy$ with respect to y.

 $(12 \times 1 = 12 \text{ Marks})$

PART B: Answer any NINE questions. Each carries TWO marks.

- 13. Find the derivative of $6 \sinh \frac{x}{3}$.
- **14.** Find $\int_0^{2\sqrt{3}} \frac{dx}{\sqrt{4+x^2}}$.
- 15. Show that $f(z) = |z|^2$ is differentiable only at z = 0.
- 16. Find $\int_C Re z dz$ where C vertically from 1+i to 1+2i then horizontally to 3+2i.
- 17. Evaluate $\int 6 \cosh(\frac{x}{2} \ln 3) dx$.
- **18.** Find the point of intersection of $r^2 = 4\cos\theta$ and $r = 1 \cos\theta$.

- 19. State Liouville's Theorem.
- 20. Show that $|\mathbf{z} 4\mathbf{i}| + |\mathbf{z} + 4\mathbf{i}| = 10$ represents an ellipse whose foci are $(0, \pm 4)$.
- **21.** Find the $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial x}$ at (2, -3) if $f(x, y) = x^2 + 4x^2y + xy^2$.
- 22. State Cauchy's integral formula.
- 23. At what points (x,y) in the plane are the function $f(x,y) = \frac{1+x}{x^2-3x+2}$ is continuous?
- **24.** Find $\lim_{(x,y,z)\to(1,4,3)} x^2 + y^2 + z^2 + 1$.

 $(9 \times 2 = 18 \text{ Marks})$

PART C: Answer any SIX questions. Each carries FIVE marks.

- 25. Find the length of the cardioid $1 \cos \theta$.
- **26.** Find a polar equation of the circle $x^2 + (y-2)^2 = 4$.
- **27.** Graph the cardioid $r = 1 \cos \theta$.
- 28. Find the diretrix of the parabola $r = \frac{25}{10 + 10\cos\theta}$.
- **29.** Evaluate $\int_C \frac{z+1}{z^2-1}$ where C is the Contour |z|=2.
- **30.** Prove that $|z_1 + z_2| \le |z_1| + |z_2|$.
- 31. Evaluate $\int_C \frac{\sin z}{(2z-1)^3}$, Where C is the unit circle.
- 32. Integrate $f(z) = \frac{2z}{(z^2 1)}$ around the circle |z| = 3/2.
- 33. Show that $f(x,y) = \frac{2x^2y}{x^4 + y^2}$ has no limit as (x,y) approaches (0,0)

 $(6 \times 5 = 30 \text{ Marks})$

PART D: Answer any TWO questions. Each carries TEN marks.

- **34.** (a). Evaluate $\int_0^{1/3} \frac{6dx}{\sqrt{1+9x^2}}$
 - (b). Find the area of the surface generated by revolving $r^2 = \cos 2\theta$ about y axis.
- 35. (a). Find the harmonic conjugate of the function $u=x^2$.
 - **(b).** Find $\lim_{z \to 5} z^2 + 1$.
- **36.** (a). Evaluate derivative of u = xy with respect to t, where x = acost and y = bsint.
 - (b). Find the total differential of $f = x^2y + 2xy$ at (1,0).

 $(2 \times 10 = 20 \text{ Marks})$