Name:

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2024 (Improvement/Supplementary) HONOURS IN MATHEMATICS

GMAH1B01T: THEORY OF EQUATIONS AND COMPLEX NUMBERS

Time: 3 Hours

Maximum Marks: 80

Part A: Answer all the questions. Each carries *one* mark. Choose the correct answer.

- If f(x) = 3x³ 2x² + 3x + 4, then f(-2) is _____.
 a) -32.
 b) 32.
 c) -34.
 d) None of the above.
 One possible integral root of x⁵ 8x⁴ 5x³ + 15x² + 3x 20 = 0 is _____.
 a) 3
 b) 6
 c) 4
 b) 6
 d) None of the above
 The cubic resolvent in Ferrari's method is:
 - a) $y^3 by^2 + (ac 4d)y + 4bd a^2d c^2 = 0$ b) $2y^3 - by^2 + (ac - 4d)y + 4bd - a^2d - c^2 = 0$ c) $y^3 + by^2 + (ac - 4d)y + 4bd - a^2d - c^2 = 0$ d) None of the above.
- 4. If z = -6 8i, then |z| is:
 - a) 100 c) 10
 - b) -10 d) -14
- 5. The polar form of z = -2i is:

a)
$$2\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$

b) $2\left(\cos\frac{\pi}{2} - i\sin\frac{\pi}{2}\right)$
c) $2\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right)$
d) None of the above

Fill in the blanks.

- 6. Any number satisfying the proposed equation is called ------
- 8. The method to solve biquadratic equation is ------
- 9. The number of variations in the sequence −2, −3, 4, 4, −1, 7, 7, 8, −5, −6, −7 is-----

Part B: Answer any eight questions. Each carries two marks.

- 11. Define a connected set, give an example.
- 12. Write a cubic equation with the roots 1, 1 + i, 1 i.
- 13. Give the cubic resolvent in Ferrari's method to solve a biquadratic equation.
- 14. Define *interior point* of a set.
- 15. Find an upper limit of the positive roots of the equation:

 $4x^5 - 15x^4 - 8x^3 + 6x^2 + 12x - 10 = 0.$

- 16. Verify that the equation $3x^3 2x 7 = 0$ has a root in the interval (1,2).
- 17. State Descartes' rule of signs.
- 18. Find $(3x^2 4x + 1)(5x + 1)$.
- 19. Find a lower limit of the negative roots of the equation:

 $4x^5 - 8x^4 - 5x^3 + 6x^2 + 10x - 25 = 0.$

20. Verify that $(3+i)(3-i)\left(\frac{1}{5}+\frac{i}{10}\right) = 2+i$.

 $(8 \times 2 = 16 \text{ Marks})$

Part C: Answer any six questions. Each carries four marks.

- 21. Give the exponential form of $\frac{i\sqrt{2}}{4+4i}$.
- 22. Show that $Arg(z_1z_2) \neq Arg z_1 + Arg z_2$.
- 23. Solve $z^3 = 8i$.
- 24. Using Cardan's formula, solve $x^3 + 9x 6 = 0$.
- 25. Verify that the equation $x^4 6x^3 + 5x^2 + 14x 4 = 0$ have roots in the intervals

$$(-2, -1), (0, 1), (3, \frac{7}{2}), (\frac{7}{2}, 4).$$

26. Show that for all real values of λ the equation

$$(x-1)(x-3)(x-5)(x-7) + \lambda(x-2)(x-4)(x-6) = 0$$

has all roots real and simple and separate them.

- 27. Find $\frac{2+5i}{-2-3i} + \frac{2i}{3i-1}$.
- 28. Using Taylor's formula expand $f(x) = 4x^5 6x^4 + 3x^3 + x^2 x 1$ in powers of x + 2.

(6 x 4 = 24 Marks)

Part D: Answer any two questions. Each carries fifteen marks.

- 29. a) Show that $f(x) = -x^6 3x^5 + 3x^4 + 11x^3 6x^2 12x + 8$ is divisible by $x^2 + x 2$.
 - b) By synthetic division find the quotient and the remainder when dividing $4x^6 + 6x^5 5x^4 + x^3 5x + 10$ by x + 2.
 - c) Using Horner's process expand $f(x) = 4x^5 + 5x^4 3x^3 + 3x^2 2$ in powers of x 1

30. Solve the biquadratic equation $x^4 - 4x^2 + x + 2 = 0$, transforming the equation to the form:

$$\left(x^{2} + \frac{a}{2}x + \frac{y}{2}\right)^{2} = \left(\frac{a^{2}}{4} - b + y\right)x^{2} + \left(-c + \frac{ay}{2}\right)x + \left(-d + \frac{y^{2}}{4}\right)$$

Using the resolvent equation:

$$y^3 - by^2 + (ac - 4d)y + 4bd - a^2d - c^2 = 0$$

- 31. How many real roots do the following equations have?
 - a) $f(x) = x^6 + 3x^5 + x^3 2x^2 + x 2 = 0$
 - b) $(x) = 3x^5 + 2x^3 x^2 + x 1 = 0$
 - c) $(x) = 1 4x + 3x^2 6x^3 + 5x^4 = 0$

(2 x 15 = 30 Marks)