(PAGES: 2)

Reg. No.....

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2024 (Improvement/Supplementary) ECONOMICS & MATHEMATICS (DOUBLE MAIN) GDMT1B01T: BASIC CALCULUS

Time: 2 ¹/₂ Hours

Maximum Marks: 80

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 25 marks)

- 1. Suppose that $y = 2x^3 x + 1$. Find Δx and Δy when:
 - (a) x changes from 3 to 3.01.
 - (b) x changes from 3 to 2.9.
- 2. State Rolle's theorem.
- 3. Write an integral giving the area of the surface obtained by revolving the graph of $y = \sin x$ on the interval $[0, \frac{pi}{2}]$ about the x-axis.
- 4. Write an integral giving the arc length of the graph of the function y = x² from P(-1, 1) to Q(2, 4).
- 5. If $\cosh x = \frac{5}{4}$, find the values of the other hyperbolic functions at *x*.
- 6. Find $\lim_{x\to\infty} \frac{1}{x-1}$, $\lim_{x\to-\infty} \frac{1}{x-1}$, and the horizontal asymptote of the graph of $f(x) = \frac{1}{x-1}$.
- 7. Show that if *F* is an antiderivative of *f* on an interval *I*, then every antiderivative of *f* on *I* has the form G(x) = F(x) + C, where *C* is a constant.
- 8. Find $\int 2x^3 dx$.
- 9. Write the sum $\sum_{k=1}^{15} (-1)^k k^3$ in the expanded form.
- Define the area under the graph of a continuous nonnegative function defined on an interval [a, b] as the limit of a sum.
- 11. Use the laws of logarithms to expand the expression $\ln \left[\sqrt{x} |\cos x| (x+1)^{-\frac{1}{3}}\right]$.
- 12. Write an integral giving the arc length of the graph of the function $y = \frac{1}{x^2+1}$ from P(-1, 1/2) to Q(2, 1/5).
- 13. Given that $\ln 2 \approx 0.6931$, and $\ln 5 \approx 1.6094$, use the laws of logarithms to approximate the expression $\ln \frac{20}{\sqrt{3}}$.
- 14. Let $(x) = \frac{1}{x^2}$. Evaluate the limit, if it exists:

a) $\lim_{x \to 0^{-}} f(x)$ b) $\lim_{x \to 0^{+}} f(x)$ c) $\lim_{x \to 0^{+}} f(x)$

15. Find the extrema of the function, if any, by examining its graph where: $f(x) = x^2 [-1 \le x \le 2].$

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 35 marks)

16. Evaluate a) $\int (x+1)3^{x^2+2x} dx$. b) $\int 3^t + t^3 dt$.

17. Prove that $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$.

- 18. Show that the function $f(x) = x^3 + x + 1$ has exactly one zero in the interval [-2,0].
- 19. Find $\int (x = 1)(x^2 2)dx$.
- 20. Let $f(x) = \begin{cases} -x+3 & \text{if } x < 2\\ \sqrt{x-2}+1 & \text{if } x \ge 2 \end{cases}$. Find $\lim_{x \to 2} f(x)$ if it exists.
- 21. Find the area of the region between the graphs of y = x and $y = x^3$.
- 22. Find the area of the surface obtained by revolving the graph of $x = \frac{1}{6}y^3 + \frac{1}{2y}$ for [1,2] about the y-axis.
- 23. Let $f(x) = \frac{2x^2 x + 1}{3x^2 + 2x 1}$. Find $\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$, and find all horizontal asymptote of the graph of f.

SECTION C: Answer any two questions. Each carries ten marks.

- 24. Prove that $\lim_{x\to 2} x^2 = 4$.
- 25. Sketch the graph of the function $f(x) = \frac{x^2}{x^2 1}$.
- 26. A car moves along a straight road with velocity function $v(t) = t^2 + t 6, 0 \le t \le 10$ where v(t) is measured in feet per second.
 - (a) Find the displacement of the car between t = 1 and t = 4.
 - (b) Find the distance covered by the car during this period of time.
- 27. Differentiate the functions:
 - I. a) $f(x) = (\cosh x \sinh x)^{2/3}$ b) $y = e^{\sinh 2t}$.
 - II. a) $g(x) = \tanh^{-1}(\cosh x)$ b) $f(x) = \sqrt{2 + \coth 3x}$.

(2 x 10 = 20 Marks)