FIRST SEMESTER FYUGP EXAMINATION NOVEMBER 2024 MINOR

PHY1MN102 PROPERTIES OF MATTER AND THERMODYNAMICS

Time: 2 Hrs

Maximum Marks : 70

BL - Bloom's Taxonomy Level (1 to 6) CO - Course Outcome

Ceiling Marks : 24 Section A Answer all questions. Each carries 3 marks. **Ouestion** CO No. Μ BL What is a rigid body? What is the torque acting on a rigid body? 3 2 CO1 1. 3 2. CO1 4 Stress Stress Strain You are given two Strain materials A and B. which one is brittle. Explain why? 3 2 CO₂ 3. State and explain surface tension. 3 4. What is zeroth law of thermodynamics? 1 CO4 Justify the statement "in a thermometer, you are measuring the temperature of the 3 3 CO4 5. thermometer". Draw the pV diagrams representing isothermal, adiabatic, isochoric, and 3 2 CO4 6. isobaric processes When ice melts at 0°C, its volume decreases. Is the internal energy change greater than, 7. 3 4 CO4 less than, or equal to the heat added? How can you tell? An aircraft engine takes in 9000 J of heat and discards 6400 J each cycle. (a) What is 3 5 CO5 8. the mechanical work output of the engine during one cycle? (b) What is the thermal efficiency of the engine? 9. Draw the pV diagram of a carnot cycle. 3 CO5 1 What are the advantages of the Kelvin temperature scale compared to the ideal gas 3 10. 3 CO5 thermometer? Ceiling Marks: 36 Section B Answer all questions. Each question carries 6 marks. No. **Ouestion** Μ BL CO 11. Why I shaped beam is used in the construction of bridge? 6 3 CO1 Explain the working of open tube manometer and mercury 2 CO₂ 12. 6 barometer. If a metal wire has its length doubled and its diameter tripled, by 13. 6 3 CO1 what factor does its Young's modulus change? Two moles of an ideal gas are heated at constant pressure from $T = 27^{\circ}C$ to $T = 107^{\circ}C$. 14. 6 5 CO₄ (a) Draw a pV-diagram for this process. (b) Calculate the work done by the gas

15.	How much work does a quantity of gas (volume V, pressure p) do in each of	6	5	CO4
	these processes? (a) V increases from $2.00 \times 10^{-3} m^3$ to $4.50 \times 10^{-3} m^3$ while			
	p is a constant $6.20 \times 10^4 Pa$. (b) V is a constant $2.00 \times 10^{-3} m^3$ while p			
	increases from $6.00 \times 10^4 Pa$ to $9.00 \times 10^4 Pa$. (c) V decreases from			
	$6.00 \times 10^{-3}m^3$ to $3.00 \times 10^{-3}m^3$ while p is a constant $1.25 \times 10^5 Pa$. (d) V increases from $2.00 \times 10^{-3}m^3$ to $4.50 \times 10^{-3}m^3$ while p increases from			
	$1.50 \times 10^5 Pa$ to $5.50 \times 10^5 Pa$. The graph of this process on a pV-diagram is a			
	straight line.			
16.	You have 1.25 mol of hydrogen gas ($C_V = \frac{5}{2}R$ and $C_p = \frac{7}{2}R$) at absolute	6	4	CO5
	temperature 325 K. You allow the gas to expand adiabatically to a final temperature of			
	195 K. (a) How much work does the gas do while being compressed? (b) What is the			
	ratio of its final volume to its initial volume? (c) What is the ratio of the final gas pressure to the initial gas pressure?			
17.		6	5	CO5
1/.	Five moles of monatomic ideal gas have initial pressure $2.50 \times 10^3 Pa$ and initial	0	3	COS
	volume 2.10 m ³ . While undergoing an adiabatic expansion, the gas does 1480 J of work. What is the final pressure of the gas after the expansion?			
18.	A Carnot engine is operated between two heat reservoirs at temperatures of 520 K and	6	4	CO5
	300 K. (a) If the engine receives 6.45 kJ of heat energy from the reservoir at 520 K in each cycle, how many joules per cycle does it discard to the reservoir at 300 K? (b)			
	How much mechanical work is performed by the engine during each cycle? (c) What is			
	the thermal efficiency of the engine?			
Section C				
Answer any 1 question. Each carries 10 marks. (1x10=10 marks)				
No.	Question	Μ	BL	CO
19.	State and prove Bernoulli's theorem and explain its applications.	10	2	CO2
20.	Define the Kelvin-Plank and Clausius statement of second law of thermodynamics.	10	5	CO5
	Using schematic diagrams, illustrate how the statements for an "engine" and a "refrigerator" are equivalent.			
