FIRST SEMESTER FYUGP EXAMINATION NOVEMBER 2024

MAJOR

PHY1CJ101 FUNDAMENTALS OF PHYSICS

Time: 2 HrsBL : Bloom's Taxonomy Level (1 to 6)

CO : Course Outcome Maximum Marks : 70

Section A			Ceiling Marks : 24				
No.	Answer all questions. Each carries 3 marks. Question		M	BL	CO		
1.	Differentiate between units and standards with one example.		3	2	CO1		
2.			3	5	CO2		
2.	When a car stops suddenly, the passengers tend to move forward relative to		5	5	002		
	their seats. Why? When a car makes a sharp turn, the passengers tend to slide to one side of the car. Why?						
3.			3	1	CO1		
4 .	Define mass and Weight of a body. Give its units.		3	3	CO1		
4.	Draw the free body diagram of a turtle in an elevator moving with an upward		3	3	02		
_	acceleration.		2	2	COD		
5. 6.	State the empirical laws of static and kinetic friction		3	3	CO2 CO3		
0.	Define power. Give its mathematical expression in terms of velocity and also		3	2	COS		
	give its unit.						
7.	If force varies as $F = kx^2$ derive the expression for work done.		3	3	CO3		
8.	What are non-conservative forces? Give two examples.		3	2	CO4		
9.	Define potential energy. Identify differences between gravitational potential		3	3	CO4		
	energy and elastic potential energy.						
10.	Draw graphical variation of potential energy, kinetic energy and total energy of		3	4	CO4		
	a freely falling body as function of distance from the ground.						
	Section B	Ceilin	g N	/lark	s : 36		
	Answer all questions. Each carries 6 marks.			1			
No.	Question		M	BL	CO		
11.	Find the angle between the vectors $\overrightarrow{A} = \hat{4}i + 5\hat{j} + 7\hat{k}$ and		6	3	CO1		
	$\overrightarrow{B}=-2\hat{i}+4\hat{j}-3\widehat{k}$						
12.	1. An iceboat with a rider on it is at rest on a frictionless horizontal surface.		6	5	CO2		
	Due to the blowing wind, 4.0 s after the iceboat is released, it is moving to the right at 6.0 m/s. What constant horizontal force F_W does the wind						
	exert on the iceboat? The combined mass of iceboat and rider is 200 kg.						
	exert on the recoont: The combined mass of recoont and rider is 200 kg.						
13.	Define Centripetal acceleration. Derive the expression for centripetal		6	2	CO1		
	acceleration.						
14.	An insect trapped in a circular groove of radius 12 cm moves along the groove		6	4	CO2		
	steadily and completes 7 revolutions in 100 s. (a) What is the angular speed, and				CO5		
	the linear speed of the motion? (b) Is the acceleration vector a constant vector?						
	What is its magnitude?						

15.	State work energy theorem. Starting from Newton's second law in one	6	2	CO3
	dimension, arrive at work energy theorem.			
16.	A 120 kg crate is dragged along the horizontal ground by a 200 N force acting at	6	4	CO3
	an angle of 30° to the horizontal, as shown. The crate moves along the surface			
	with a constant velocity of 0.5 m s ^{-1} . The 200 N force is applied for a time of			
	16 s. Calculate the work done on the crate by: (a)the 200 N force (b) the weight			
	of the crate (c) the normal contact force N.			
	N 200 N			
	F weight			
17.		6	5	CO3
17.	An air-track glider of mass 0.100 kg is attached to the end of a horizontal air track by a spring with force constant 20.0 N/m. Initially the spring is	Ū	5	00.
	unstretched and the glider is moving at 1.50 m/s to the right. Find the maximum			
	distance d that the glider moves to the right (a) if the air track is turned on, so			
	that there is no friction, and (b) if the air is turned off, so that there is kinetic			
	friction with coefficient $\mu_{\rm k} = 0.47$.			
18.	A bullet of 10 g strikes a ballistic pendulum of mass 2 kg. The centre of mass of	6	5	CO4
	the pendulum rises a vertical distances of 12 cm. Assuming the bullet remains			
	embedded in the pendulum, calculate its initial speed?			
	Section C	•	•	Đ
	Answer any one question. Each carries 10 marks. (1x10=10 marks)	125	DI	60
N 7			BL	CO
No.	Question	<u>M</u>		CO^{2}
No. 19.	A car moving on a curved level road. Describe the various forces acting on the	10	2	
	A car moving on a curved level road. Describe the various forces acting on the car? Draw its free body diagram. derive an expression for the maximum speed			
	A car moving on a curved level road. Describe the various forces acting on the			
	A car moving on a curved level road. Describe the various forces acting on the car? Draw its free body diagram. derive an expression for the maximum speed			CO2 CO5