FIRST SEMESTER FYUGP EXAMINATION NOVEMBER 2024 MINOR MAT1MN102 DIFFERENTIAL CALCULUS

Time: 2 Hrs Maximum Marks: 70

BL - Bloom's Taxonomy Level (1 to 6) CO - Course Outcome

	Section A Ceiling Marks : 24						
N	Answer all questions. Each carries 3 marks.						
No. 1.	Question	M 2	BL				
	Find $\lim_{x \to 1} (x^7 - 2x^5 + 1)^{35}$	3	2	CO1			
2.	Find $\lim_{x \to -4} \frac{2x+8}{x^2+x-12}$	3	5	CO1			
3.	What 3 conditions are satisfied if f is continuous at $x = c$	3	1	CO1			
4.	Define horizontal asymptote and give an example	3	3	CO1			
5.	Find $rac{dy}{dx}$ if $y=3x^8-2x^5+6x+1$	3	1	CO2			
6.	Find $\frac{dy}{dx}$ if $y = e^{(\sqrt{1+5x^3})}$	3	6	CO2			
7.	Find $rac{dy}{dx}$ if $y=sin^{-1}x+cos^{-1}x$	3	2	CO2			
8.	Find $\frac{dy}{dx}$ if $y = cos^{-1}(\frac{x+1}{2})$	3	5	CO2			
9.	Define second derivative test	3	2	CO3			
10.	Define stationary point and find stationary points of $f(x) = x^4 - 6x^2 + 5$	3	4	CO2			
	· ·	. ,	<i>r</i> 1	CO3			
	Section B Ceiling Marks : 36						
No.	Answer all questions. Each question carries 6 marks. Question	M	BL	CO			
	=	6	5	CO1			
	$egin{aligned} \operatorname{Let} f(x) = egin{cases} x-1 & x \leq 3 \ 3x-7 & x > 3 \end{cases} \end{aligned}$						
	Find						
	$\lim_{x \to 3^-} f(x) \text{ (b) } \lim_{x \to 3^+} f(x) \text{ (c) } \lim_{x \to 3} f(x)$						
12.	Find $5x^3-2x^2+1$	6	6	CO1			
12.	$\operatorname{Find}\lim_{x o +\infty}rac{5x^3-2x^2+1}{1-3x}$			COI			
13.	Find $\frac{dy}{dx}$ if $y=(x^2+x)(x^2-x)$	6	1	CO2			
14.	Find $\frac{d^2y}{dx^2}$ if $y = x \cos x$	6	5	CO2			
15.	Find $\lim_{lim} \frac{x^{100}}{}$	6	1	CO2			
1.6	$x \rightarrow +\infty e^x$			G02			
16.	Find the intervals on which $f(x) = x^2 - 4x + 3$ is increasing and the intervals on which it is decreasing	6	4	CO2 CO3			
17.	Find the intervals on which $f(x) = x^3$ is concave up and the interval on which	6	5	CO2			
	it is concave down			CO3			
18.	(a) Define critical points and Find critical points of $f(x) = x^3 - 6x + 2$	6	4	CO2			
	(b) Define stationary point and find stationary points of			CO3			
	$\int f(x)=2-x+2x^2-x^3$						
			I				

	Section C Answer any 1 question. Each carries 10 marks. (1x10=10 marks)						
No.	Question	M	BL	CO			
19.	(a) At what points, if any does the graph of $y = \frac{1}{3}x^3 - \frac{3}{2}x^2 + 2x$ have a	10	3	CO1			
	horizontal tangent.						
	(b) Find $\frac{dy}{dx}$ if $y = \frac{x^{\frac{3}{2}} + 2}{x}$						
20.	(a) Find $\frac{d}{dx} \left[ln(\frac{x^2 sinx}{\sqrt{1+x}}) \right]$	10	4	CO2			
	(b) find $\frac{dy}{dx}$ if $y = cos(lnx)$						