FIRST SEMESTER FYUGP EXAMINATION NOVEMBER 2024 MAJOR

MAT1CJ101 DIFFERENTIAL CALCULUS

Time : 2 Hrs BL : Bloom's Taxonomy Level (1 to 6)

CO : Course Outcome

Maximum Marks: 70

	Section A Ceiling Marks : 24						
	Answer all questions. Each carries 3 marks.						
No.	Question	Μ	BL	CO			
1.	Find the domain and range of $y = 1/x$.	3	2	CO1			
2.	Show by an example that a function may fail to have a limit at a point in its	3	6	CO1			
	domain.						
3.	$Find \ \lim_{x ightarrow 0^+} rac{x}{ x } \ and \lim_{x ightarrow 0^-} rac{x}{ x }.$	3	2	CO1			
4.	$Find \lim_{x ightarrow 0^+} rac{x}{ x } and \lim_{x ightarrow 0^-} rac{x}{ x }. onumber \ ext{Evaluate} \lim_{x ightarrow 4} rac{4x-x^2}{2-\sqrt{x}}$	3	5	CO1			
5.	At what points the function $y = rac{x \tan x}{x^2 + 1}$ is continuous?	3	3	CO1			
6.	State the Max-Min theorem for continuous functions.	3	1	CO2			
7.	Define critical point of a function. Find the critical points of $f(x) = x^3 - 12x$ on [-3, 3].	3	3	CO2			
8.	Write the second derivative test for concavity.	3	2	CO3			
9.	Find $\lim_{x\to\infty} \left(5+\frac{1}{x}\right)$ and $\lim_{x\to-\infty} \frac{1}{2+\frac{1}{x}}$.	3	3	CO3			
10.	Evaluate $\lim_{x \to -\infty} \frac{-4x^3 + 7x}{2x^2 - 3x - 10}$.	3	4	CO3			
Section B Ceiling Marks : 36							
	Answer all questions. Each carries 6 marks.						
No.	Question	Μ	BL	CO			
11.	Find the center and radius of the circle $x^2 + y^2 + 4x - 4y + 4 = 0$.	6	3	CO1			
12.	$ ext{Evaluate} \lim_{x ightarrow 1^+} rac{\sqrt{2x}(x-1)}{ x-1 } ext{and} \lim_{x ightarrow 1^-} rac{\sqrt{2x}(x-1)}{ x-1 }$	6	5	CO1			
13.	state and prove the sum rule for differentiation.	6	2	CO1			
14.	${ m Find \ the \ derivative \ of \ }y=rac{(x-1)(x^2-2x)}{x^4}.$	6	3	CO1			
15.	Find the absolute extrema values of $f(x) = \frac{2}{3}x - 5$ on [-2,3].	6	4	CO2			
16.	State and prove the first derivative test for increasing and decreasing functions.	6	5	CO2			
17.	Let $f'(x) = (x-1)^2(x+2)^2$. a) What are the critical points of f ?	6	6	CO2			
	b) On what intervals is f increasing or decreasing?						
	c) At what points, if any, does f assume local extreme values?						
18.	Using Sandwich theorem, find the asymptotes of the curve $y = 2 + \frac{sinx}{x}$.	6	5	CO3			
18.		6	5	CO3			
18.	Using Sandwich theorem, find the asymptotes of the curve $y = 2 + \frac{sinx}{x}$.	6	5	CO3			

19.	(a) If f has a derivative at $x = c$, then prove that f is continuous at $x = c$.	10	4	CO1		
	(b) Show by an example that a function need not have a derivative at a point where it is continuous.					
20.	Graph the function $y = x^3 - 3x + 3$.	10	6	CO3		
