Reg.No.:

FIRST SEMESTER FYUGP EXAMINATION NOVEMBER 2024 MAJOR AMA1CJ101 CALCULUS 1

Time : 2 Hrs

Maximum Marks : 70

BL - Bloom's Taxonomy Level (1 to 6) CO - Course Outcome

		Section A Ceilin	ig M	lark	s:24					
	Answer all questions. Each carries 3 marks.									
No.		Question	Μ	BL	CO					
1.		State Fermat's Theorem.	3	1	CO1					
2.		Find critical numbers, if any, of the function $f(x) = rac{x}{x^2+1}.$	3	5	CO1					
3.		The function f defined by $f(x) = -x^2 + 4x + 2$. Apply differentiation to find the intervals in which is increasing and the intervals in which f is decreasing.	3	4	CO1					
4.		Show that the function $f(x) = x - \cos x$ is always increasing.	3	5	CO1					
5.		$\begin{array}{ll} \text{Calculate} & \lim_{x \to 1^-} \frac{1}{x-1} & \text{and} & \lim_{x \to 1^+} \frac{1}{x-1}. \end{array} \text{ Find the vertical asymptote of} \\ \text{the graph of} & f(x) = \frac{1}{x-1}. \end{array}$	3	5	CO1					
6.		Use Riemann sums to define the area under the graph of a continuous nonnegative function defined on an interval [a,b].	3	4	CO2					
7.		Evaluate	3	5						
	a	$\int 2x \ dx$.	1	5	CO2					
	b	$\int rac{1}{1+x^2} dx \; .$	1	5	CO2					
	C	$\int e^{2x} \ dx \ .$	1	5	CO2					
8.		${\rm Find \ the \ area \ between \ the \ curves \ }y=x, \ y=0, \ x=-1, \ x=1.$	3	3	CO3					
9.		Find the area between the curves $x=y^2,\;x=0,\;y=2,\;y=3.$	3	5	CO2 CO4					
10.		Calculate the volume of the solid obtained by revolving the region under the	3	5	CO3					
		$ ext{graph of } y = \sqrt{2x} on \left[1,2 ight] ext{about the } x - ext{axis.}$			CO4					
Section B Ceiling Marks : 36										
No		Ouestion	M	RI	CO					
11		State and prove Mean Value Theorem	6	3	C01					
12		Find the extreme values of the function $f(x) = 2\cos x - x$ on $[0, 2\pi]$	6	2	C01					
13.		Find the relative extrema of $f(x) = \frac{1}{3}x^3 - 2x^2 - 5x - 10$ using the second derivative test.	6	2	CO1					
14.		Determine the intervals where the graph of $f(x) = \sin 2x$, is concave upward and where it is concave donward. Also find all inflection points of the function.	6	5	CO1					

Name:

15.		Apply Mean Value Theorem to show that if F is and antiderivative of f on an interval I , then every antiderivative of f on I has the form $G(x) = F(x) + C$, where C is a constant.	6	3	CO1 CO2					
16.		${ m If}\; y=\int_0^{x^3}\cos t^2\; dt\;, { m then\;find}\; {dy\over dx}\;.$	6	2	CO2					
17.		Answer the following:	6	5						
	a	If f is an even continuous function on $[-a,a]$, then prove that $\int_{-a}^{a} f(x) \ dx = 2 \int_{0}^{a} f(x) \ dx$	3	5	CO2					
	b	$ ext{If} \ f ext{ is an odd continuous function on } [-a,a] ext{ , then prove that } \int_{-a}^{a} f(x) \ dx = 0$	3	5	CO2					
18.		Make a rough sketch and find the area of the region bounded by the graphs of the curves $y = \sqrt{x}$, $y = x^2$.	6	4	CO2 CO4					
Section c										
		Answer any 1 question. Each carries 10 marks. (1x10=10 marks)								
No).	Question	Μ	BL	CO					
19.		Let $f(x) = (x - 2)^4 + 1$. Find critical numbers, inflection points, extreme points and draw the graph of the function.	10	2	CO1					
20.		The graph of $x = y^2$ on [0,1] is resolved about the y - Axis	10	3						
	a	Find the volume of the solid generated.	5	3	CO3 CO4					
	b	Find the area of the curved surface generated.	5	3	CO3 CO4					

^{***}