Name:

Reg. No.:

FIRST SEMESTER FYUGP EXAMINATION NOVEMBER 2024 APPLIED MATHEMATICS MULTI DISCIPLINARY COURSE

AMA1FM105(1): MATRICES AND BASICS OF PROBABILITY THEORY

Time : 1 ¹/₂ Hrs.

Maximum Marks: 50

M – Mark

BL - Bloom's Taxonomy Level (1 to 6) CO - Course Outcome

Section A: Answer all questions. Each carries 2 marks. Ceiling: 16 Marks									
No.	No. Ouestion								
1.	Let A= 2 -2 6	$\begin{array}{c cc} 7 & -5 \\ 1 & 0 \\ 3 & 4 \end{array}$. H	Evaluate the minors of elements 2 and 3 in A.	2	2	CO1			
2.	If $\begin{vmatrix} 2 & 3 \\ 9 & 6 \end{vmatrix} + \begin{vmatrix} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$\begin{bmatrix} -1 & -2 \\ 7 & 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$ \begin{array}{c c} 1 & x \\ 6 & y \end{array} $ find x and y.	2	3	CO1			
3.	Write the formula for finding x, y and z using matrix method in solving a system of equations in three variables x , y and z .					CO2			
4.	Express the following sets of simultaneous equations in matrix form:21CO2a) $x+y+z = 4$; $2x-3y+4z = 33$; $3x-2y-2z = 2$ 21CO2b) $2x+3y-4z = 26$; $x-5y-3z = -87$; $-7x+2y+6z = 12$ 21CO2								
5.	Solve the system of equations using Cramer's Rule. 3x+2y=7 2x+y=4				2	CO2			
6.	Solve 2x+3y=6 2x-2y=1 by G	auss eliminat	ion method.	2	3	CO2			
7.	Solve the system of equations -x+y=-5 2x-5y =1					CO2			
8.	At a political c to which they responses? Political Party Democrat	lebate, a sam belonged. Th Frequency f 46	ple of audience members were asked to name the political party eir responses are shown in the table. What is the mode of	2	2	CO3			
	Republican Independent Other	34 39 5							
			(PTO)	1					

9.	Define Classical Probability.											
10.	Evaluate 4! and 6!/5!	2	2	CO3								
	Section B: Answer all questions. Each carries 6 marks.											
Ceiling: 24 Marks												
No.	Question	Μ	BL	CO								
11.	Evaluate the matrix product AB and BA	6	5	CO1								
	$A = \begin{bmatrix} 3 & 2 & 1 \\ 9 & 1 & 3 \end{bmatrix} B = \begin{bmatrix} 2 & 9 \\ 1 & 3 \\ 2 & 4 \end{bmatrix}$											
12.	Solve the simultaneous equations $2x+4y=2$, $-3x+y=11$ using determinant method.	6	5	CO2								
13.	In a study of high school football players that suffered concussions, researchers placed the	6	3	CO3								
	players in two groups. Players that recovered from their concussions in 14 days or less											
	were placed in Group 1. Those that took more than 14 days were placed in Group 2. The											
	recovery times (in days) for group 1 are listed below. Find the range sample variance and											
	standard deviation of the recovery times											
14.	A card is selected from a standard deck of playing cards. Find the probability of each event.	6	2	CO3								
	1 Event D. Selecting the ning of sloke											
	1. Event D: Selecting the filme of clubs											
	2. Event E: Selecting a heart											
	3. Event F: Selecting a diamond, heart, club or spade											
15.	Determine whether the events are mutually exclusive. Explain your reasoning	6	2	CO3								
	1. Event A: Roll a 3 on a dice.											
	Event B: Roll a 4 on a dice.											
	2. Event A: Randomly select a male student.											
	Event B : Randomly select a nursing major.											
	3. Event A : Randomly select a blood donor with type O blood.											
	Event B: Randomly select a female blood donor.											
	Section C: Answer any one question. Each carries 10 marks. (1 x 10 = 10 Marks)											
No.	Question	M		CO_{1}								
10.	Determine the adjoint matrix of $\begin{bmatrix} 3 & 0 & 2 \\ -2 & 5 & 7 \end{bmatrix}$	10	3	COI								
	$\begin{vmatrix} -1 & 0 & 3 \end{vmatrix}$											

17.	Construct a frequency distribution for the data set using the indicated number of classes. In	10	5	CO3
	the table, include the midpoints, relative frequencies and cumulative frequencies. Which			
	class has the greatest frequency and which has the least frequency?			
	Data: Book Spending Number of classes :6			
	Data set: Amounts (in dollars) spent on books for a semester			
	91 472 279 249 530 188 341 266 199 142 273 189 130 489 266 248 101 375 486 190 398 188 269 43 30 127 354 84			