Name: Reg.No.:

FIRST SEMESTER FYUGP EXAMINATIONS NOVEMBER 2024

MAJOR

BCA1CJ103 DISCRETE STRUCTURES FOR COMPUTER APPLICATIONS

Time : 2 HrsBL : Bloom's Taxonomy Level (1 to 6)

CO : Course Outcome

Maximum Marks : 70

	Section A	Ceiling	Mar	ks : 24		
Answer all questions. Each carries 3 marks.						
No.	Question	Μ	BL	CO		
1.	Check the validity of an arguement,	3	5	CO1		
	"If you have a current password, then you can log onto the network".					
	"You have a current password".					
	∴"You can log onto the network".					
2.	Define Partition of a set.	3	1	CO2		
3.	Give a counterexample to disprove $(A-B)-C=A-(B-C)$	3	6	CO2		
4.	Define Modulus function and draw the graph.	3	2	CO2		
5.	Let $x = -2.56$: $y = -3.49$. Evaluate	3	5	CO2		
	1. $\begin{bmatrix} xy \\ 2 \end{bmatrix}$ 2. $\begin{bmatrix} x \end{bmatrix} \begin{bmatrix} y \\ 3 \end{bmatrix}$ 3. $\begin{bmatrix} x - y \end{bmatrix}$					
6.	At a sequectial ball each of 9 guests shakes hands with everybody else exactly once. Find the number of handshakes made.	3	5	CO3		
7.	Discuss the chromatic number of the cycle graph C_n .	3	2	CO4		
8.	Let G be a simple graph with n vertices. What can you say about $G \cup G'$?	3	4	CO4		
9.	Define binary trees and give an example.	3	2	CO5		
10.	Find the centre of the given graph.	3	- 5	CO3		
	Section B	Ceiling	Mar	ks : 36		
	Answer all questions. Each carries 6 marks.					
No.	Question	Μ	BL	CO		

11.	Use truth table to verify the following equivalences	6	1	CO1		
	1 p AT = n					
	$\begin{array}{c} 1. p \land 1 - p \\ 2 \ n \lor F = F \end{array}$					
	2. pv1 = 1 3 $pVn \equiv p$					
	$\frac{3. \text{ pvp-p}}{4 \text{ n} \text{ n} \text{m}}$					
	ч. р/ф-р					
12.	Construct a truth table for the compound proposition	6	3	CO1		
	$p \rightarrow (\neg q \forall r)$					
		_				
13.	Explain union and intersection of two sets. Draw the venn diagrams.	6	2	CO2		
14.	Find the number of leap years after 1600 and not beyond 2000	6	4	CO2		
15.	The weights in the graph below represent the distances between cities a through e A salewoman based at city a would like to visit every other city exactly once and return to the home city, keeping her total travel to a minimum. What route should she take and how far will she travel?	6	5	CO4		
16.	Find all spanning trees of complete graph K_4	6	5	CO5		
17.	Give recursive definition of the level of a vertex V. Compute the level of vertex k in the	6	2	COS		
18.	Using Kruskal's Algorithm construct a minimal spanning tree for the given weighted graph.	6	3	CO4		
	$a \underbrace{\begin{array}{c} 3\\ 2\\ 2\\ 5\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$					
Section C						
	Answer any one question. Each carries 10 marks. (1x10=10 marks)					
No.	Question	Μ	BL	CO		

