FIRST SEMESTER FYUGP EXAMINATION NOVEMBER 2024

MAJOR

BCA1CJ 102 MATHEMATICAL FOUNDATION FOR COMPUTER APPLICATIONS

Time: 2 HrsBL : Bloom's Taxonomy Level (1 to 6)

CO : Course Outcome

Maximum Marks: 70

	Section A Ceiling Marks : 24				
N Y	Answer all questions. Each carries 3 marks.	1.7	DI	60	
No.	Question	M	BL	CO	
1.	Explain the operation scalar multiplication with an example. $\frac{1}{1}$	3	l	COL	
2.	You have a matrix C of order 4×3 and another matrix D of order 3×3 . Evaluate the possibility of adding these matrices and the implications of their	3	6	COI	
	orders in matrix operations.				
3.	Define linear independence and provide an example of two vectors that are	3	2	CO4	
_	linearly independent.				
4.	Define vector, magnitude of a vector and give an example of a vector.	3	1	CO4	
5.	Show that $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ using the vectors $\vec{a} = 3\vec{i} - 4\vec{j} - 5\vec{k}$ and	3	5	CO4	
	b=2i+3j+k.				
6.	Using the result $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$, find the derivative of $x^2 - 2$ at	3	3	CO5	
7	$\frac{x = 10.}{\text{Evaluato}} \qquad \frac{x - \sin x}{x - \sin x}$	2	5	CO5	
7.	$\lim_{x \to 0} \frac{x - \sin x}{x^3}.$	3	5	005	
8.	Differentiate the function $y = (x^2 + 1)(x^3 + 3)$.	3	4	CO5	
9.	State First and Second fundamental theorem of Integral Calculus.	3	1	CO5	
10.	Find the integral $\int_{-1}^{1} x dx$.	3	5	CO5	
	Section B Ceili	ing N	Aark	ts : 36	
N T	Answer all questions. Each carries 6 marks.	1.7	DI	60	
No.	$\begin{array}{cccc} Question \\ \hline $	M	BL	CO	
11.	Given $\begin{bmatrix} 2 & 4 & 0 \\ -1 & 5 & 7 \end{bmatrix}$ and $\begin{bmatrix} 0 & 2 & 3 \\ -1 & 5 & 7 \end{bmatrix}$. Find $P^{+}Q^{+}$.	6	2	COI	
	$1 = \begin{bmatrix} 1 & 3 & 7 \\ 3 & 0 & 8 \end{bmatrix}$ $\begin{bmatrix} 2 & - & 5 & 0 & 1 \\ 7 & 4 & 9 \end{bmatrix}$				
12.	For the matrix $\begin{bmatrix} 1 & 0 & 2 \end{bmatrix}$, find the adjoint of A.	6	2	CO1	
	$A = \begin{bmatrix} 2 & -1 & 3 \end{bmatrix}$, and an adjoint of the	Ũ	-	001	
	$1 \ 1 \ 4$				
13.	Given the matrix $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$	6	5	CO1	
	$P=egin{bmatrix} 0 & 4 & 5 \end{bmatrix}.$				
	$\begin{bmatrix} 1 & 0 & 6 \end{bmatrix}$				
	a Calculate the minor and cofactor of all the elements				
	b. Use minors and cofactors to find the determinant of matrix P.				
14.	Using Gauss Jordan method solve the system of equations:	6	3	CO3	
	x+y+z=6				
	2y-z=3				
	-x+3y+2z=12				
15	Find the derivative of $\frac{x}{1}$.	6	Δ	CO5	
10.	The the derivative of $x-1$	U	1 1	000	

16	Integrate the function $(4m + 2)$, $(m^2 + m + 1)$ and include the constant of	6	2	CO5			
10.	The grate the function $(4x + 2)\sqrt{x^2 + x + 1}$ and include the constant of	0	7	COS			
	integration.						
17.	By the method of inspection find the anti-derivative of following functions;	6	5	CO5			
	$a_{\perp}\cos 3x$						
	$\frac{1}{b}(ax+b)^2$						
	0: (uu + 0)						
10	$1 \qquad (1)^n \qquad (1)^n$	6	_	GOF			
18.	Integrate the function $x(1-x)^n$ from 0 to 1.	6	5	CO5			
Section C							
Answer any one question Each carries 10 marks $(1 \times 10 = 10 \text{ marks})$							
	Answer any one question. Each carries to marks. (1810-10 marks)			-			
T T		3.6	DT	00			
No.	Question	Μ	BL	CO			
No. 19.	QuestionFind the characteristic equation and eigen values of the matrix $\begin{bmatrix} 1 & -1 & 4 \end{bmatrix}$	M 10	BL 4	CO CO2			
No. 19.	QuestionFind the characteristic equation and eigen values of the matrix $ \begin{bmatrix} 1 & -1 & 4 \\ 2 & 2 & 1 \end{bmatrix} $	M 10	BL 4	CO CO2			
No. 19.	QuestionFind the characteristic equation and eigen values of the matrix $ \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \end{bmatrix} $	M 10	BL 4	CO CO2			
No. 19.	QuestionFind the characteristic equation and eigen values of the matrix $ \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix} $	M 10	BL 4	CO CO2			
<u>No.</u> 19.	QuestionFind the characteristic equation and eigen values of the matrix $ \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix} $ Then, calculate the eigen vector of the largest eigen value	M 10	BL 4	CO CO2			
<u>No.</u> 19.	QuestionFind the characteristic equation and eigen values of the matrix $ \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix} $ Then, calculate the eigen vector of the largest eigen value.	M 10	BL 4	CO CO2			
No. 19. 20.	QuestionFind the characteristic equation and eigen values of the matrix $ \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix} $ Then, calculate the eigen vector of the largest eigen value.	M 10 10 10	BL 4	CO2 CO2 CO5			
No. 19. 20.	QuestionFind the characteristic equation and eigen values of the matrix $\begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix}$ Then, calculate the eigen vector of the largest eigen value.a. Find $\frac{d}{dx}((x^2 + 11x + 7)(x + 5)).$	M 10 10	BL 4	CO2 CO2 CO5			
No. 19. 20.	Question Find the characteristic equation and eigen values of the matrix $\begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix}$. Then, calculate the eigen vector of the largest eigen value. a. Find $\frac{d}{dx}((x^2 + 11x + 7)(x + 5))$. b. Find $\frac{d}{dx}((e^x) + 11x + 7)(x + 5))$.	M 10 10	BL 4	CO2 CO2 CO5			
No. 19. 20.	Question Find the characteristic equation and eigen values of the matrix $\begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix}$. Then, calculate the eigen vector of the largest eigen value. a. Find $\frac{d}{dx}((x^2 + 11x + 7)(x + 5))$. b. Find $\frac{d}{dx}(\frac{e^x}{1+x})$.	M 10 10	BL 4	CO CO2 CO5			
No. 19. 20.	Question Find the characteristic equation and eigen values of the matrix $\begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix}$. Then, calculate the eigen vector of the largest eigen value. a. Find $\frac{d}{dx}((x^2 + 11x + 7)(x + 5))$. b. Find $\frac{d}{dx}(\frac{e^x}{1+x})$.	M 10 10	BL 4 3	CO CO2 CO5			