(PAGES 2)

Reg.No.....

Name:

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(Regular/Improvement/Supplementary)

MATHEMATICS

GMAT1B01T: BASIC LOGIC & CALCULUS

Time: 2 ¹/₂ Hours

Maximum Marks: 80

SECTION A: Answer the following questions. Each carries *two* marks.

(Ceiling 25 Marks)

- 1. Let $p: \Delta ABC$ is equilateral and $q: \Delta ABC$ is isosceles. Write the statements $p \rightarrow q$ and $q \rightarrow p$.
- 2. Negate the proposition, where x is an arbitrary integer $(\forall x)(x^2 > 0)$.
- 3. Prove that there is a positive integer that can be expressed in two different ways as the sum of two cubes.
- 4. Find $\lim_{x \to 2} f(x)$ if it exists. Where $f(x) = \begin{cases} 4x+2 & \text{if } x \neq 2 \\ 4 & \text{if } x = 2 \end{cases}$
- 5. State Squeeze Theorem.
- 6. Give precise definition for limit of a function at a number.
- 7. Find the extrema of a function, if any, by examining its graph. $f(x) = x^2$, $-1 \le x < 2$.
- 8. State first Derivative Test.
- 9. Determine the intervals where the graph of $f(x) = x^4 4x^3 + 12$ is concave upward and the intervals where it is concave downward.
- 10. Find $\lim_{x \to 1^-} \frac{1}{x-1}$ and $\lim_{x \to 1^+} \frac{1}{x-1}$ and the vertical asymptote of the graph of $f(x) = \frac{1}{x-1}$.
- 11. Find all antiderivatives of f(x) = 1 on $(-\infty, \infty)$.
- 12. Evaluate $\int \frac{1}{x^3} dx$.
- 13. Write the sum $\sum_{k=1}^{20} \frac{1}{(k+1)^2}$ in the expanded form.
- 14. Evaluate the sum $\sum_{k=1}^{10} 3k^2(2k+1)$.
- 15. Give an example to show that even though the number of subintervalsapproach infinity, the norm of a partition may not approach 0.

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 35 Marks)

- 16. Determine whether or not each a tautology (i) $p \lor (\sim p)(ii) p \land (\sim p)$.
- 17. Prove that there is a prime number > 3.
- 18. Let $f(x) = \{ \frac{-x+3}{\sqrt{x-2}+1} \text{ if } x < 2 \\ \text{if } x \ge 2 \end{bmatrix}$. Find $\lim_{x \to 2} f(x)$ if it exists.
- 19. Find (i) $\lim_{x \to \frac{\pi}{2}} x \sin x$ (ii) $\lim_{x \to \frac{\pi}{4}} (2x^2 + \cot x)$.

- 20. Let $f(x) = 2 \sin x + \sin 2x$. Write $f^{1}(x)$ and $\int f(x) dx$.
- 21. Let $f(x) = x^3$
 - (a) Show that f satisfies the hypotheses of the Mean Value Theorem on [-1,1].
 - (b) Find the number(s) c in (-1,1) that guaranteed by the Mean Value Theorem.
- 22. Find the vertical asymptotes of the graph of $f(x) = \frac{x}{x^2 x 2}$.
- 23. Evaluate $\int_{-1}^{3} (4 x^2) dx$ by finding the limit of Riemann sum.

SECTION C: Answer any two questions. Each carries ten marks.

- 24. Determine the truth value of each proposition, where P(x,y): $y < x^2$.
 - (i) $(\forall x)(\forall y)P(x,y)$
 - (ii) $(\exists x)(\exists y)P(x,y)$
 - (iii) $(\forall x)(\exists y)P(x,y)$
 - (iv) $(\forall y)(\exists x)P(x,y)$
 - (v) $(\exists x)(\forall y)P(x,y)$
 - (vi) $(\exists y)(\forall x)P(x,y)$

25. Prove that $\lim_{x \to 2} x^2 = 4$.

- 26. A man has 100 ft of fencing to enclose a rectangular garden in his backyard. Find the dimensions of the garden of largest area he can have if he uses all of the fencing.
- 27. State and prove the mean value theorem for integrals.

(2 x 10 = 20 Marks)