D1BEM2301

Reg.No.....

Name:

FIRST SEMESTER B.Sc DEGREE EXAMINATION,NOVEMBER 2023 ECONOMICS & MATHEMATICS GDMT1B01T-BASIC CALCULUS

Time : 2.5 Hours

Maximum: 80 Marks

SECTION A: Answer the following questions. Each carries 2 marks (Ceiling 25)

- 1. Let $f(x) = \begin{cases} x 1 & \text{if } x \le 3 \\ -2x + 8 & \text{if } x > 3 \end{cases}$; Evaluate $\lim_{x \to 3^+} f(x)$ and $\lim_{x \to 3^-} f(x)$.
- 2. Find $\lim_{x \to \frac{\pi}{4}} (2x^2 + cotx)$.
- 3. State the Squeeze Theorem.
- 4. Find the critical numbers of $f(x) = 2x^3 + 6x + 7$.
- 5. Define Inflection point.
- 6. What is an antiderivative of a function f? Give an example.
- 7. Evaluate $\int_{1}^{2} (x^3 2x^2 + 1) dx$.
- 8. Evaluate $\sum_{k=1}^{8} (3-k^2)$.
- 9. Define the Riemann sum of f(x) on [a, b].
- 10. Find the area of the region between the graph of $y = x^2 + 2$ and y = x 1 and the vertical lines x = -1 and x = 2.
- 11. State the Laws of Logarithms.
- 12. Find the derivative of $y = 3\sqrt{x}$.
- 13. Draw the graph of $y = a^x$.
- 14. Define the natural logarithmic function.

15. Evaluate $\lim_{x \to 0} \frac{e^x - 1}{x^2 + x}.$

SECTION B: Answer the following questions. Each carries 5 marks (Ceiling 35)

- 16. Let $f(x) = \begin{cases} kx+1, & x \leq 2\\ kx^2-3, & x > 2 \end{cases}$ Find the value of k that will make f continuous on $(-\infty, \infty)$.
- 17. Find the linearization of $f(x) = \sqrt{x+3}$ at a = 1, and use it to approximate the numbers $\sqrt{3.9}$ and $\sqrt{4.1}$.
- 18. Show that the function $f(x) = x^3 + x + 1$ has exactly one zero in the interval [-2, 0].
- 19. Determine the intervals where the function $f(x) = x + \frac{1}{x}$ is increasing and where it is decreasing.
- 20. Find the relative extrema of $f(x) = x^3 3x^2 24x + 32$ using the Second Derivative Test.
- 21. Find the average value of the function of $f(x) = 2x^2 3x$ over the interval [-1, 2].
- 22. A solid has a circular base of radius 2. Parallel cross sections of the solid perpendicular to its base are equateral triangels. What is the volume of the solid.
- 23. If $sinhx = \frac{4}{3}$, find the values of the other hyperbolic functions at x.

SECTION C: Answer any 2 question $(2 \times 10 = 20 \text{ Marks})$

- 24. Sketch the graph of the function $f(x) = x^3 6x^2 + 9x + 2$.
- 25. (a) Find the value of c by the Mean Value theorem for Integrals for $f(x) = x^2 + 2x$ on the interval [0, 1].
 - (b) State both parts of the Fundamental theorem of Calculus.
- 26. (a) Find the area of the surface obtained by revolving the graph of $y = \frac{1}{2}x + 2$ on the interval [0, 2] about the x -axis.
 - (b) Find the arc length of the graph of f(x) = -2x + 3 from P(-1,5) to Q(2,-1).

(a) Evaluate
$$\lim_{x \to 0} \frac{x^3}{x - tanx}$$
.

27.

(b) Find the derivative of $y = x^2 sech^{-1} 3x$.