(PAGES 2)

Reg.No	*************
•	
Nama	

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2022

(Regular/Improvement/Supplementary)

CHEMISTRY COMPLEMENTARY COURSE FOR PHYSICS, BOTANY & ZOOLOGY GCHE1C01T: GENERAL CHEMISTRY

Time: 2 Hours

Maximum Marks: 60

SECTION A: Answer the following questions. Each carries 2 marks. (Ceiling 20 Marks)

- 11. Define normality. Calculate the normality of a solution containing 20 g of NaOH in 2 L.
- 2. Methyl orange is not a suitable indicator for titrating acetic acid and sodium hydroxide. Why?
- 3. Give two examples for redox indicators.
- 4 Explain the origin of Lyman and Balmer series in the line spectrum of hydrogen. How we could find the wavelength of any line in a Lyman as well as Balmer series of spectrum?
- 5. Why doesn't the wave nature of a moving cricket ball become evident to an observer?
- 6. Which quantum number assists in predicting the number of orbitals present in the given sublevel? Explain it's significance.
- 7. How can the three types of radioactive rays be distinguished?
- 8. State Yukawa's meson field theory of nucleon forces.
- 9. What is the principle involved in hydrogen bomb?
- 10. Name two transition metal ions and two non-transition metal ion playing important roles in biological process.
- 11. Discuss the differences between haemoglobin and myoglobin.
- 12. In which direction is sodium ion pumped across the cell membrane?

SECTION B: Answer the following questions. Each carries 5 marks (Ceiling 30 Marks)

- 13. Distinguish between the terms valency and oxidation number with suitable examples
- 14. A solution is prepared by mixing 30 grams of ethanol and 30 grams of water. Determine the mole fraction of each component. The molecular weight of ethanol and water is 46.07 g/mol and 18 g/mol respectively.
- 15. Explain the application of solubility product in the group separation of cations in qualitative analysis.

- 16. Account for the shape of SF₄ and ClF₃ molecule based on VSEPR theory.
- 17. Calculate the lattice energy of calcium fluoride (CaF₂) from the following data: Madelung constant = 2.519; ionic radii: Ca²⁺ =0.99 Å, F⁻ = 1.36 Å; Born exponent =7; electronic charge = 1.6022 x 10⁻¹⁹ C; ε₀ = 8.854 x 10⁻¹² C²m⁻¹J⁻¹. (Hint: r₀ = sum of the radii of the cation and anion)
 - 18. Given: mass of proton = 1.00758 amu; mass of a neutron = 1.00897 amu; mass of a helium nucleus = 4.00820 amu. Calculate the binding energy of the helium nucleus in MeV and in Joule.
 - 19. Give short note on the principle underlying in nuclear reactor.

SECTION C: Answer any 1 question. Each carries 10 marks.

- 20. What are the salient features of MOT? Discuss different types of sigma and pi molecular orbitals that are obtained from the overlap of different atomic orbitals.
- 21. Discuss briefly photosynthesis emphasising the role of chlorophyll.

 $(1 \times 10 = 10 \text{ Marks})$