D1	B	H	M	1	2	2	0	1

(PAGES 2)

•	

Name:

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2022 HONOURS IN MATHEMATICS

GMAH1B01T: THEORY OF EQUATIONS AND COMPLEX NUMBERS

Time: 3 Hours Maximum Marks: 80

PART A: Answer all the questions. Each carries 1 mark.

Choose the Correct Answer

- 1. If $f(x) = 3x^3 2x^2 + 3x + 4$, then f(-2) is

- c) -30
- 2. One possible integral root of $x^5 6x^4 5x^3 + 8x^2 + 3x 24 = 0$ is.....
 - a) 10

- b) 4 c) 5 d) None of the above
- 3. One possible integral root of $x^5 7x^4 5x^3 + 6x^2 + 3x 10 = 0$ is.....
 - a) 3

- c) 5
- 4. For small positive values of x, the equation $-2x^3 + 3x^5 100x^6$ is.....
 - a) Positive
- b) Negative
- c) Either positive or negative d) Zero
- 5. The number of permanences in the sequence 4, 4, -2, -3, 4, 4, -1, 7, 7, 8, -5, -6, -7 is...
 - a) 5

b) 6

- c) 4 d) None of the above

Fill in the Blanks

6. If
$$f(x) = 4x^3 + x^2 + 2x - 3$$
, then $f(2)$ is -----

- 7. The remainder when dividing $f(x) = x^3 + x^2 5x + 3$ by x 3 is -----
- 8. The method to solve biquadratic equation is -----
- 9. The number of variations in the sequence

1,
$$-2$$
, -3 , 4 , -4 , -1 , 7 , 7 , 8 , -5 , -6 , -7 is ------

 $(10 \times 1 = 10 \text{ Marks})$

PART B: Answer any 8 questions. Each carries 2 marks

- 11. Show that $f(x) = 2x^3 3x^2 5x 12$ is divisible by x 3.
- 12. Show that $x^n c^n$ is divisible by x c.
- 13. Give Taylor's formula.
- 14. Find a lower limit of the negative roots of the equation.

$$3x^5 - 8x^4 - 10x^3 + 6x^2 + 3x - 10 = 0$$

15. Find an upper limit of the positive roots of the equation.

$$3x^5 - 8x^4 - 10x^3 + 6x^2 + 3x - 10 = 0$$

- 16. Give the cubic resolvent in Ferrari's method to solve a biquadratic equation.
- 17. Verify that the equation $2x^4 7x + 2 = 0$ has a root in the interval (1,2).
- 18. State Rolle's Theorem.
- 19. Show that 1 + i satisfies the equation $z^2 2z + 2 = 0$.
- 20. Define boundary point of a set.

 $(8 \times 2 = 16 \text{ Marks})$

PART C: Answer any 6 questions. Each carries 4 marks.

- 21. Write a polynomial of the lowest degree that for x = 0 takes the value 3 and has the following roots: 2 and -1 as simple roots, -2 as a double root, 3 as a triple root
- 22. Factorize $x^3 1$ into linear factors.
- 23. Find the sum of squares of roots of the equation $2x^4 8x^3 + 6x^2 3 = 0$
- 24. Solve the equation $x^3 + 9x^2 + 6x 56 = 0$, roots are a, b, c and b = -2a.
- 25. Find limits of the roots for the equation $6x^5 27x^4 100x^3 200x 50 = 0$
- 26. Show that for all real values of λ the equation.

$$(x-2)(x-5)(x-7)(x-9) + \lambda(x-3)(x-6)(x-8)(x-10) = 0$$

has all roots real and simple and separate them.

- 27. Give the exponential form of -1 i.
- 28. Find $\frac{4+2i}{-2+3i} + \frac{2+i}{3i}$

 $(6 \times 4 = 24 \text{ Marks})$

PART D: Answer any 2 questions. Each carries 15 marks.

- 29. Using Cardan's formula, solve $x^3 15x^2 + 105x 245 = 0$
- 30. How many real roots do the following equations have?

a)
$$f(x) = x^5 + x^3 - 2x^2 + x - 2 = 0$$

b)
$$(x) = x^5 + 2x^3 - x^2 + x - 1 = 0$$

c)
$$(x) = 1 - 2x + 3x^2 - 4x^3 + 5x^4 = 0$$

31. a) By writing the individual factors on the left in exponential form, performing the needed operations and finally changing back to rectangular coordinates, show that

$$(-1+i)^7 = -8(1+i)$$

b) Find all values of $(-16)^{\frac{1}{4}}$

 $(2 \times 15 = 30 \text{ Marks})$